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Abstract: We construct a supersymmetric standard model in the context of the

Z12−I orbifold compactification of the heterotic string theory. The gauge group is

SU(3)c × SU(2)L × U(1)Y × U(1)4 × [SO(10) × U(1)3]′. We obtain three chiral families,

3 × {Q, dc, uc, L, ec, νc}, and Higgs doublets. There are numerous neutral singlets many of

which can have VEVs so that low energy phenomenology on Yukawa couplings can be satis-

fied. In one assignment (Model E) of the electroweak hypercharge, we obtain the string scale

value of sin2 θ0
W = 3

8 and another exactly massless exphoton (in addition to the photon)

coupling to exotic particles only. There are color triplet and anti-triplet exotics, α and α,

SU(2)L doublet exotics, δ and δ, and SU(3)c × SU(2)L singlet but Y = 2
3 ,−1

3 ,−2
3 , 1

3 exotics,

ξ, η, ξ, η. We show that all these vector-like exotics achieve heavy masses by appropriate

VEVs of neutral singlets. One can find an effective R-parity between light (electroweak

scale) particles so that proton and the LSP can live sufficiently long. In another assignment

(Model S) of the electroweak hypercharge, there does not appear any exotic particle but

sin2 θ0
W = 3

14 .
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1. Introduction

There has been numerous attempts to obtain supersymmetric standard models (SSM) from

the orbifold compactification of heterotic string [1 – 3]. In the old standardlike models, the

attempts were just obtaining the standard model gauge group and three families [4, 5]. In a

recent past, more ambitious attempts such as sin2 θW = 3
8 [6], one pair of Higgs doublets [7],

and neutrino masses [8] were tried to be explained. More recently, the Yukawa coupling

structure has been looked for [9 – 11]. Among these, in particular we find the GUT model

of [11] is satisfactory for the strong CP solution via the QCD axion although a GUT scale

axion decay constant is needed [12], and for the approximate R-parity violation [13].

From the proton longevity problem, the R-parity or matter parity must be exact or

feebly violated if it is an approximate one [14]. Otherwise, the string model construction

must be treated as an academic exercise. Even with a successful R-parity, still there may

be a good deal of phenomenological problems to be overcome. Successful Yukawa coupling

structure is the next immediate concern in particle phenomenology. It is known that the

Yukawa coupling structure can be satisfied with the help of numerous singlets [10, 11].

The next important concern is the vacuum stabilization problem or the problem of flat

directions. But the vacuum stabilization problem is the most difficult one to analyze. At

present, we are not yet at the stage to deal with this flat direction problem and we defer this

flat direction problem until we find a model satisfying other phenomenological constraints.

The approximate R-parity of [13] is the result of GUT scale VEVs of 10H and 10
H

in

the flipped SU(5) model. This hints that it may be possible to obtain an exact R-parity

if one succeeds in obtaining an SSM without such constraint on the GUT scale VEVs.1

Since the SSM through the flipped SU(5) was obtained from a Z12−I compactification, we

look for a SSM directly in the Z12−I compactification. If found, the model is free from

the constraints of 10H and 10
H

in the flipped SU(5) model. But, then in a direct SSM

construction one must check the doublet-triplet splitting more carefully. A computer search

of SSMs is in principle possible but it is very difficult to put in all the phenomenological

requirements. At some stage a model by model study is necessary. For example, we

encounter a difficulty of calculating the determinant of mass matrix of singlet exotics in

models with exotics whose number is much more than 10. The determinant being zero up

to some order of Yukawa couplings does not necessarily mean that exotics do not obtain

mass since still higher orders might render a non-vanishing determinant. Fortunately, for

the Z12−I compactification toward a direct SSM, it has been possible to find out an SSM

without the computer search.

In this paper, we present an SSM in the Z12−I compactification which can allow an

exact R-parity for low energy (electroweak scale) fields, which will be called an effective

R-parity. In the full theory, the R-parity is not exact but the violation occurs through the

type, (heavy field) → (light fields). With this kind of effective R-parity, still the lightest

supersymmetric particle (LSP) can be a stable CDM candidate.

1If unlucky, such constraints will be replaced by GUT scale constraints on singlet VEVs, which has to

be checked carefully.
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The R-parity in the SO(10) GUT is achieved by different assignments of quarks and

leptons and Higgs doublets: in the the spinor 16 for quarks and leptons and the vector 10

for Higgs doublets. This kind of spinor-vector disparity can be adopted in the untwisted

sector of heterotic string also. Let us consider only the E8 part of the heterotic string [15]

for an illustration. The untwisted sector massless matter spectrum in E8 can be P 2 = 2

weights distinguished by the spinor or the vector properties

S : ([+ + + + + + ++]) V : (±1 ± 1 0 0 0 0 0 0)

where ± represents ±1
2 , the notation [ ] means including even number of sign flips inside

the bracket, and the underline means permutations of the entries on the underline. It is

obvious that cubic Yukawa couplings constructed with S and V respect a Z2 parity. But

including matter from the twisted sector, the study is more complex and we need the full

machinery of Yukawa couplings, including nonrenormalizable terms. Here, the inclusion of

neutral singlets, among which some needed singlet VEVs can take the 〈S〉 form, spoils this

idea of an exact R-parity. This needed singlet 〈S〉 is the reason that exact R-parity models

are very rare if not impossible. It is closely linked to the assignment of the electroweak

hypercharge Y . We will show two interesting Y assignments with the resulting physics

such as exotics, sin2 θW and R-parity.

For the R-parity to be exact, it must be a subgroup of an anomaly-free U(1) gauge

group, i.e. it must be a discrete gauge symmetry [16], otherwise large gravitational correc-

tions such as through wormhole processes may violate it. Finding an anomaly free U(1)

gauge symmetry direction whose Z2 subgroup is an R-parity is necessary for this purpose.

For the U(1) gauge symmetry toward the R-parity, we use U(1)Γ. For the study of some

Yukawa couplings, another U(1)Γ′ symmetry is more convenient. When we start to list

the massless states, we include these U(1) charges , Γ and Γ′, even before presenting their

definitions.

In section 2, we present an SSM from a Z12−I compactification. Sections 3–5 discuss

Model E. In section 3, we list exotic states which form vectorlike representations. We show

how these exotics obtain masses by VEVs of neutral singlets. In section 4, we discuss

that there exist D- and F -flat directions. In section 5, we find a U(1) direction whose Z2

subgroup can be used as an effective R-parity in Model E. In section 6, we discuss Model

S. The arguments on D- and F -flat directions and an effective R-parity of section 6 are

similar to those given in section 4 with minor corrections on the needed singlet VEVs.

Section 7 is a conclusion. In appendix A, we list massless spectra according to the sectors.

In appendix B, we classify U(1) groups and find out the anomalous U(1)A direction.

2. SSM from Z12−I compactification

In E8×E′
8 heterotic orbifold compactification, a model is completely determined with (1)

a twist vector φ, which is associated with the compactified 3 dimensional complex (or 6

dimensional real) space, (2) a shift vector V which is associated with the 16 dimensional

“gauge coordinate” and (3) Wilson line introduced in the compactified space. We employ

– 3 –
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the Z12−I orbifold specified with the twist vector φ = ( 5
12

4
12

1
12 ), and take the following

shift vector V and Wilson line a3:

φ =

(

5

12

4

12

1

12

)

V =

(

1

4

1

4

1

4

1

4

1

4
;

5

12

5

12

1

12

)(

1

4

3

4
0 ; 05

)′
(2.1)

a3 =

(

2

3

2

3

2

3

−2

3

−2

3
;
2

3
0

2

3

)(

0
2

3

2

3
; 05

)′
.

They satisfy all the conditions required for modular invariance [3, 17] because in our model

V 2
0 − φ2 = 1, a2

3 = 4, V · a3 = 1. They give V 2
+ − φ2 = 7 and V 2

− − φ2 = 3, where

V0,+,− = V + mfa3 with mf = 0,+1,−1.

Low energy field spectrum in a model is determined with (1) massless condition and

(2) projection operator. The massless conditions for left and right movers on an orbifold

ZN are

left movers :
(P + kVf )2

2
+

∑

i

NL
i φ̃i − c̃k = 0,

right movers :
(s + kφ)2

2
+

∑

i

NR
i φ̃i − ck = 0,

(2.2)

where k = 0, 1, 2, · · · , N − 1, Vf = (V + mfa3), and i runs over {1, 2, 3, 1̄, 2̄, 3̄}. Here

φ̃j ≡ kφj mod Z such that 0 < φ̃j ≤ 1, and φ̃j̄ ≡ −kφj mod Z such that 0 < φ̃j̄ ≤ 1. If

kφj is an integer, φ̃j = 1 [9, 10]. NL
i and NR

i indicate oscillating numbers for left and right

movers. It turns out that NR
i = 0 generically for the massless right mover states in the

Z12−I orbifold compactification. In eqs. (2.2), P and s [≡ (s0, s̃)] are E8×E′
8 and SO(8)

weight vectors, respectively. The values of c̃k, ck are found in ref. [11].

The multiplicity for a given massless state is calculated by the generalized GSO pro-

jection operator [3, 11],

Pk(f) =
1

NNW

N−1
∑

l=0

χ̃(θk, θl)e2πilΘf , (2.3)

where f (= {f0, f+, f−}) denotes twisted sectors associated with kVf = kV , k(V + a3),

k(V − a3). N (= 12 in our case) is the order N in the ZN orbifold, and NW is the order

of the Wilson line, 3 in our case. The phase Θf in eq. (2.3) is given by

Θf =
∑

i

(NL
i − NR

i )φ̂i −
k

2
(V 2

f − φ2) + (P + kVf ) · Vf − (s̃ + kφ) · φ, (2.4)

where φ̂i = φi sgn(φ̃i). Here, χ̃(θk, θl) is the degeneracy factor summarized in ref. [11].

Note that Pk(f0) = Pk(f+) = Pk(f−) for k = 0, 3, 6, 9.

In addition, the left moving states in the U , T3, T6, and T9 sectors should satisfy [9]

(P + kV ) · a3 = 0 mod Z, for k = 0, 3, 6, 9. (2.5)
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2.1 Massless spectra

With the general formulae eqs. (2.2), (2.3), and (2.5), and our choices eq. (2.1) the massless

spectra are calculated.

2.1.1 Chirality and N = 1 SUSY

The chirality and the number of supersymmetry (SUSY) N in four dimensional spacetime

(4D) after compactification are determined by the massless right mover states. Massless

fermionic states (“R-sector”) in the untwisted sector are represented by the four component

spinor s = (s0; s̃) = (±;±±±) with even number of plus signs. Throughout this paper, +

(−) denotes +1
2 (−1

2 ). s0 determines the chirality of a state. We define a state of s0 = − (+)

as the left (right) handed state. The corresponding bosonic states (“NS-sector”), which

also satisfy the massless condition for the right mover, are obtained just by shifting the

left-handed [right-handed] fermionic state by r̃− = (−;− + +) [r̃+ = (+;+ −−)].

The ten dimensional SUSY generators are decomposed into Q(10) = Q(4)⊗Q(6). Under

point group of the orbifold, Q(6) transform as Q(6) → exp(2πis ·φ)Q(6). The invariant com-

ponent corresponds to the unbroken supersymmetry generator in 4D. With φ = ( 5
12

4
12

1
12 ),

the solutions of s satisfying s · φ =integer are only (−;− + +) and (+;+ −−), which give

N = 1 SUSY because the number of solutions counts the number of unbroken SUSY.

2.1.2 Gauge symmetry and weak mixing angle

The gauge group and gauge quantum numbers are determined by the massless left mover

states. The root vectors of E8×E′
8 satisfying P · V = P · a3 = 0 [3] are only

(1,−1, 0; 0, 0, 03)(08)′, (0, 0, 0; 1,−1; 08)(08)′, (08)(03;±1,±1, 0, 0, 0)′, (2.6)

where the underlined entries allow permutations. Thus the resulting gauge group is

SU(3)c × SU(2)L × U(1)Y × U(1)4 × [SO(10) × U(1)3]′. (2.7)

Identification of the electroweak hypercharge is essential for the assignment of SM

fields, the GUT value of the weak mixing angle sin2 θ0
W , the appearance of exotics, and

R parity assignments. In this paper, we present two identifications of the electroweak

hypercharge: (i) one with exotics and sin2 θ0
W = 3

8 and (ii) the other without exotics but

sin2 θ0
W = 3

14 . The electroweak hypercharge Y is defined as

Model E : Y =

(

1

3

1

3

1

3

−1

2

−1

2
; 0 0 0

)(

0 0 0; 0 0 0 0 0

)′
, (2.8)

Model S : Ỹ =

(

1

3

1

3

1

3

−1

2

−1

2
; 0 0 0

)(

0 0 1; 0 0 0 0 0

)′
, (2.9)

where Model E has exotics and sin2 θ0
W = 3

8 and Model S has only standard Qem charges

but sin2 θ0
W = 3

14 . Each assignment has its own merits and shortcomings. The hypercharge

Y is orthogonal to every root vector of SU(3)c, SU(2)L, and SO(10)′. This operator turns

out to give the standard hypercharge assignments to the standard model (SM) chiral fields

viz. Y (Q) = 1
6 , etc.

– 5 –
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The current algebra in the heterotic string theory fixes the normalization of Y . The

sin2 θ0
W estimation is briefed for Model E. Let us consider a properly normalized Z, which

is embedded in the string theory as

Z = u × Y = u ×
[

√

2

3

~q3√
2
− ~q2√

2

]

, (2.10)

where u indicates a normalization factor of Y , and ~q3 and ~q2 are orthonormal bases, ~q3 =
1√
3
(1, 1, 1; 0, 0; 03)(08)′ and ~q2 = 1√

2
(0, 0, 0; 1, 1; 03)(08)′. For Z to be embedded in the

heterotic string theory, u should be fixed such that u2(2
3 + 1) = 1 or u2 = 3

5 [3, 18]. This

hypercharge normalization leads to a gauge coupling normalization g2
1 = 5

3g2
Y , where g1

is unified at the string scale with the non-Abelian gauge couplings such as SU(2)L gauge

coupling g2. Thus, in Model E the weak mixing angle at the string scale is

sin2 θ0
W =

1

1 + (g2
2/g

2
Y )

=
3

8
. (2.11)

The same kind of calculation gives sin2 θ0
W = 3

14 in Model S.

Since Ỹ in Model S is obtained by adding a U(1)6 generator belonging to E′
8, in the

bulk of the paper (except section 6) we present quantum numbers of Model E and an

effective R-parity. Then, in section 6 we present Model S.

2.1.3 Chiral matter

The matter spectra appear from the untwisted and twisted sectors. All matter fields in this

model are tabulated in tables 14–20 in appendix A. Depending on the values of P · V , the

origins of the fields are denoted by U1, U2, U3 for the untwisted sector fields. We name the

twisted sector associated with kVf = (V + mfa3) “T
mf

k ” with superscripts 0,+,− (except

for T3, T6, T9). For modular invariance, all these sectors should be considered.

In a ZN orbifold compactification, the anti-particle states (CT P conjugations) of par-

ticle states in a T
mf

k sector are, in general, found from the T
mf

N−k sector. In the Z12−I

case, the untwisted sector U and T3, T6, T9 sectors provide both left and right chirality

states. In particular, the U and T6 sectors contain particle states and their corresponding

anti-particles states. On the other hand, T1, T2, T4, T7 (T11, T10, T8, T5) sectors allow only

left (right) chirality states.

As seen in the tables 14–20, this model allows three families of SSM matter fields from

the U1,3 and T 0
4 sectors. The other fields including the electroweak Higgs are vectorlike

under the SM gauge symmetry:

3 × {Q, dc, uc, L, ec, νc} + vectorlike fields (including MSSM Higgs). (2.12)

The key representations of this SSM are

matter :

{

Q = (3,2) 1

6

, dc = (3∗,1) 1

3

, uc = (3∗,1)−2

3

,

L = (1,2)−1

2

, ec = (1,1)1, νc = (1,1)0,
(2.13)

Higgs :

{

Hu = (1,2) 1

2

, Hd = (1,2)−1

2

, electroweak scale

10, string scale.
(2.14)
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In this model, there are vectorlike D and D (color triplet and antitriplet fields) which carry

the familiar d-type quark charge Qem= ∓1
3 , respectively.

We observe also that there are states with exotic electromagnetic charges (exotics)

from the T±
k (k = 1, 2, 4, 7) sectors. All color exotics are SU(3)c triplets and antitriplets

and carry Qem= 0,±1
3 . The SU(2) doublet exotics or simply doublet exotics carry Y =

±1
6 whose components carry again Qem= ±2

3 ,±1
3 . The SU(3)c × SU(2)L singlet exotics

carry Qem= ±2
3 ,±1

3 . All these exotics form vectorlike representations under the SM gauge

symmetry.2 The mass scales of these vectorlike representations are near the string scale

if the needed neutral singlets develop string scale VEVs. We will comment more on this

later.

In table 1, we list particles carrying familiar Qem charges. In addition, we list neutral

singlets in table 2. Some of these neutral singlets are required to have string scale VEVs

in order to break extra U(1)s and give masses to the exotics.

In the T3 and T9 sectors as shown in table 16 of appendix, there are three 10′s of

SO(10)′. In this model, the hidden sector confining group is SO(10)′. We assume that

some of three 10′s of SO(10)′ obtain VEVs and break SO(10)′ to a smaller nonabelian

group so that its confining scale is at the intermediate scale. The gaugino condensation at

this intermediate scale would break the N = 1 SUSY.

2.2 Yukawa couplings

To study Yukawa couplings in orbifold compactification, we need to know the H-momentum

of a state in a sector. Neglecting the oscillator numbers, the H-momenta of states, Hmom,0

[≡ (s̃ + kφ + r̃−)] are

U1 :

(

− 1, 0, 0

)

, U2 :

(

0, 1, 0

)

, U3 :

(

0, 0, 1

)

,

T1 :

(

−7
12 , 4

12 , 1
12

)

, T2 :

(

−1
6 , 4

6 , 1
6

)

, T3 :

(

−3
4 , 0, 1

4

)

,

T4 :

(

−1
3 , 1

3 , 1
3

)

,

{

T5 :

(

1
12 , −4

12 , −7
12

)}

, T6 :

(

−1
2 , 0, 1

2

)

,

T7 :

(

−1
12 , 4

12 , 7
12

)

, T9 :

(

−1
4 , 0, 3

4

)

,

(2.15)

from which T5 will not be used since the chiral fields there are right-handed while the other

fields are represented as left-handed. With oscillators, the H-momentum [≡ (R1, R2, R3)]

are

(Hmom)j = (Hmom,0)j − (NL)j + (NL)j̄ , j = 1, 2, 3. (2.16)

The superpotential terms are obtained by examining vertex operators satisfying the

orbifold conditions [3]. It can be summarized as the following selection rules:

2Since all the SSM matter fields arise from the U and T 0
4 sectors, while all the exotics are only from the

twist sectors associated with Wilson line T±

k (k = 1, 2, 4, 7), 3 families of SSM matter fields are relatively

easily obtained even with other choices of Wilson line. Indeed, a large class of models with 1

4
as the first

five entries in the shift vector V and with a proper Wilson line can give sin2θW = 3

8
and 3 families of the

SSM matter fields. However, it is non-trivial to construct a model such that all exotics form vectorlike

representations under the SM gauge symmetry.

– 7 –
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Visible states SM notation Γ Γ′

(+ + −; +−; + + +)(08)′ Q(U1) –1 +1

(+ −−;−−; + + +)(08)′ dc(U3) –1 +1

(+ −−; ++;+ −−)(08)′ uc(U3) –1 −3

(− −−; +−; + −−)(08)′ L(U1) –1 −3

(+ + +;−−;− + −)(08)′ ec(U3) +5 +5

(+ + +;++;+ + +)(08)′ νc(U3) –1 +1

(0 0 0;−1 0;−1 0 0)(08)′ Hu(U2) +2 +2

(0 0 0; 1 0; 0 0 1)(08)′ Hd(U2) –4 −2

(+ + −; +−; 1
6

1
6

−1
6 )(08)′ 2 · Q(T 0

4 ) +1 +1

(+ −−;−−; 1
6

1
6

−1
6 )(08)′ 2 · dc(T 0

4 ) +1 +1

(+ −−; ++; 1
6

1
6

−1
6 )(08)′ 2 · uc(T 0

4 ) −3 −3

(−−−; +−; 1
6

1
6

−1
6 )(08)′ 2 · L(T 0

4 ) −3 −3

(+ + +;−−; 1
6

1
6

−1
6 )(08)′ 2 · ec(T 0

4 ) +5 +5

(+ + +;++; 1
6

1
6

−1
6 )(08)′ 2 · νc(T 0

4 ) +1 +1

(1, 0, 0; 0 0; −1
3

−1
3

1
3)(08)′ 3 · D1/3(T

0
4 ) +2 +2

(−1, 0, 0; 0 0; −1
3

−1
3

1
3)(08)′ 2 · D−1/3(T

0
4 ) −2 −2

(0, 0, 0;−1 0; −1
3

−1
3

1
3)(08)′ 2 · Hu(T 0

4 ) +2 +2

(0, 0, 0; 1 0; −1
3

−1
3

1
3)(08)′ 3 · Hd(T

0
4 ) –2 −2

(1, 0, 0; 0 0; 03)(−1
2

1
2 0; 05)′ 3 · D1/3(T6) +2 +2

(−1, 0, 0; 0 0; 03)(1
2

−1
2 0; 05)′ 3 · D−1/3(T6) −2 −2

(0, 0, 0;−1 0; 03)(−1
2

1
2 0; 05)′ 2 · Hu(T6) +2 +2

(0, 0, 0; 1 0; 03)(1
2

−1
2 0; 05)′ 2 · Hd(T6) −2 −2

(3
4
−1
4

−1
4 ; −1

4
−1
4 ; 1

4
1
4

1
4)(3

4
1
4 0; 05)′ D1/3(T3) 1 +2

(−3
4

1
4

1
4 ; 1

4
1
4 ; −1

4
−1
4

−1
4 )(−3

4
−1
4 0; 05)′ 2 · D−1/3(T9) −1 −2

(1
4

1
4

1
4 ; −3

4
1
4 ; −1

4
−1
4

−1
4 )(1

4
3
4 0; 05)′ 2 · Hu(T9) +4 +3

(−1
4

−1
4

−1
4 ; 3

4
−1
4 ; 1

4
1
4

1
4)(−1

4
−3
4 0; 05)′ Hd(T3) −4 −3

Table 1: Standard charge left-handed (L) chiral fields. The multiplicity is shown as the coefficients

of representations. + and – represent + 1

2
and − 1

2
, respectively. The U(1) charges Γ and Γ′ will

be presented in eqs. (2.23) and (2.24). Neutral singlets are listed in the following table. D1/3 and

D−1/3 in T 0
4 and T6 have unconventional Γs, not mixing with d and dc with an exact parity.

(a) Gauge invariance.

(b) H-momentum conservation with φ =
(

5
12 , 4

12 , 1
12

)

,

∑

z

R1(z) = −1 mod 12,
∑

z

R2(z) = 1 mod 3,
∑

z

R3(z) = 1 mod 12, (2.17)

where z(≡ A,B,C, . . . ) denotes the index of states participating in a vertex operator.
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(c) Space group selection rules:
∑

z

k(z) = 0 mod 12, (2.18)

∑

z

[kmf ] (z) = 0 mod 3. (2.19)

If some singlets obtain string scale VEVs, however, the condition (b) can be merged

into eq. (2.18) in (c). Our strategy to see this is to construct composite singlets (CS) which

have H-momenta, (1,0,0), (−1, 0, 0), (0,1,0), (0,−1,0), (0,0,1), (0,0,−1), using only singlets

developing VEVs of order Mstring. Then, with any integer set (l,m, n), we can attach an

appropriate number of CSs to make the total H-momentum be (−1, 1, 1). Indeed, it is

possible to construct such CSs, with the singlets defined in table 2:

[S1S
(1)
8 S10][S

(3)
4 S

(1)
7 S12][S

(1)
4 S

(3)
7 S12] : (1, 0, 0),

[S1S
(1)
8 S10][S

(3)
4 S

(1)
7 S12][S1S

(3)
8 S10] : (−1, 0, 0),

[S1S
(1)
8 S10][S

(3)
4 S

(1)
7 S12][S1S

(3)
8 S10][S

(1)
4 S

(3)
7 S12] : (0, 1, 0), (2.20)

[S1S
(1)
8 S10][S

(3)
4 S

(1)
7 S12] : (0,−1, 0),

[S1S
(1)
8 S10]

2[S
(3)
4 S

(1)
7 S12] : (0, 0, 1),

[S1S
(1)
8 S10][S

(3)
4 S

(1)
7 S12]

2 : (0, 0,−1),

where the CS H-momenta are shown. S
(1)
4 , S

(3)
4 denote S4 states with (NL)j = 21̄, 23,

respectively. Similarly, S
(1)
7,8 , S

(3)
7,8 are S7,8 with (NL)j = 11̄, 13. For oscillating numbers

(NL)j of massless states, refer to the tables in appendix A. CS in eq. (2.20) are neutral

under all the gauge symmetries in this model, and fulfill the space group selection rules of

eqs. (2.18) and (2.19). Hence, multiplication of the above CS to an operator change only

the H-momentum vector by integers. Their VEVs are assumed to be of the string scale on

a vacuum.

Then, on the vacuum with VEVs for S1, S
(1,3)
4,7,8 , S10, and S12, the H-momentum con-

servation eq. (2.17) can reduce to
∑

z

Rj(z) =⇒ integer, j = 1, 2, 3, (2.21)

with the understanding that arbitrary number of CS with O(Mstring) VEVs can be at-

tached. Thus, if an operator’s H-momentum is an integer vector, proper CS can be multi-

plied such that the resultant H-momentum becomes (−1, 1, 1) mod (12, 3, 12). Note that

operators multiplied by (higher power of) the above CS are not suppressed, because the

VEVs in eq. (2.20) is assumed to be of order Mstring. Moreover, (NL)j ’s contributions

to H-momentum also can be always compensated by proper CS, because they just add

integers to Hmom,0 as seen in eq. (2.16).

H-momentum in Tk sector is generally given by (Hmom,0 in Tk) = (Hmom,0 in T1) ×
k + (an integer vector). Accordingly the condition eq. (2.18) is equivalent to eq. (2.21).

From now on, we will require only (a) and (c) for Yukawa couplings with the understanding

proper CS are multiplied.
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Visible states SM notation B − L X Γ Γ′ Label

(0 0 0; 0 0; 1 0 − 1)(08)′ 10(U2) 0 0 +2 0 S0

(05; −2
3

−2
3

−1
3 )(1

2
−1
2 0; 05)′ 10(T 0

2 ) 0 0 +2 0 S1

(05; −2
3

1
3

2
3 )(−1

2
1
2 0; 05)′ 10(T 0

2 ) 0 0 −2 0 S2

(05; 1
3
−2
3

2
3 )(−1

2
1
2 0; 05)′ 10(T 0

2 ) 0 0 0 0 S3

(05; 1
3

1
3
−1
3 )(1

2
−1
2 0; 05)′ 2 · 10(T 0

2 ) 0 0 0 0 S4

(05; 1
3

1
3
−1
3 )(−1

2
1
2 0; 05)′ 2 · 10(T 0

2 ) 0 0 0 0 S5

(05; 2
3

2
3
−2
3 )(08)′ 2 · 10(T 0

4 ) 0 0 0 0 S6

(05; −1
3

−1
3

−2
3 )(08)′ 7 · 10(T 0

4 ) 0 0 +2 0 S7

(05; −1
3

2
3

1
3)(08)′ 6 · 10(T 0

4 ) 0 0 −2 0 S8

(05; 2
3
−1
3

1
3)(08)′ 6 · 10(T 0

4 ) 0 0 0 0 S9

(05; 1 0 0)(−1
2

1
2 0; 05)′ 2 · 10(T6) 0 0 0 0 S10

(05;−1 0 0)(1
2
−1
2 0; 05)′ 2 · 10(T6) 0 0 0 0 S11

(05; 0 0 1)(−1
2

1
2 0; 05)′ 2 · 10(T6) 0 0 −2 0 S12

(05; 0 0 − 1)(1
2
−1
2 0; 05)′ 2 · 10(T6) 0 0 +2 0 S13

(1
4

1
4

1
4

1
4

1
4 ; 5

12
5
12

1
12)(1

4
3
4 0; 05)′ 10(T 0

1 ) 1
2 −5

2 0 +1 S14

(1
4

1
4

1
4

1
4

1
4 ; 5

12
5
12

1
12)(−3

4
−1
4 0; 05)′ 10(T 0

1 ) 1
2 −5

2 −1 0 S15

(−1
4

−1
4

−1
4

−1
4

−1
4 ; −1

12
−1
12

−5
12 )(1

4
3
4 0; 05)′ 10(T 0

1 ) −1
2

5
2 +1 0 S16

(−1
4

−1
4

−1
4

−1
4

−1
4 ; −1

12
−1
12

−5
12 )(−3

4
−1
4 0; 05)′ 10(T 0

1 ) −1
2

5
2 0 −1 S17

(1
4

1
4

1
4

1
4

1
4 ; −7

12
5
12

1
12)(−1

4
−3
4 0; 05)′ 10(T 0

7 ) 1
2 −5

2 −1 0 S18

(1
4

1
4

1
4

1
4

1
4 ; −7

12
5
12

1
12 )(3

4
1
4 0; 05)′ 10(T 0

7 ) 1
2 −5

2 0 +1 S19

(1
4

1
4

1
4

1
4

1
4 ; 5

12
−7
12

1
12)(−1

4
−3
4 0; 05)′ 10(T 0

7 ) 1
2 −5

2 +1 0 S20

(1
4

1
4

1
4

1
4

1
4 ; 5

12
−7
12

1
12 )(3

4
1
4 0; 05)′ 10(T 0

7 ) 1
2 −5

2 +2 +1 S21

(−1
4

−1
4

−1
4

−1
4

−1
4 ; −1

12
−1
12

7
12)(−1

4
−3
4 0; 05)′ 10(T 0

7 ) −1
2

5
2 −2 −1 S22

(−1
4

−1
4

−1
4

−1
4

−1
4 ; −1

12
−1
12

7
12)(3

4
1
4 0; 05)′ 10(T 0

7 ) −1
2

5
2 −1 0 S23

(−1
4

−1
4

−1
4

−1
4

−1
4 ; −3

4
1
4

1
4)(−1

4
−3
4 0; 05)′ 10(T3) −1

2
5
2 −2 −1 S24

(1
4

1
4

1
4

1
4

1
4 ; 3

4
−1
4

−1
4 )(1

4
3
4 0; 05)′ 10(T9)

1
2 −5

2 +2 +1 S25

(−1
4

−1
4

−1
4

−1
4

−1
4 ; 1

4
1
4
−3
4 )(−1

4
−3
4 0; 05)′ 2 · 10(T3) −1

2
5
2 0 −1 S26

(1
4

1
4

1
4

1
4

1
4 ; −1

4
−1
4

3
4)(1

4
3
4 0; 05)′ 10(T9)

1
2 −5

2 0 +1 S27

(1
4

1
4

1
4

1
4

1
4 ; −1

4
−1
4

−1
4 )(3

4
1
4 0; 05)′ 2 · 10(T3)

1
2 −5

2 +2 +1 S28

(−1
4

−1
4

−1
4

−1
4

−1
4 ; 1

4
1
4

1
4 )(−3

4
−1
4 0; 05)′ 3 · 10(T9) −1

2
5
2 −2 −1 S29

Table 2: Left-handed electromagnetically neutral SO(10)′ singlets. There is only one untwisted

sector singlet S0. To have a definition of parity, S15, S16, S18, S20, and S23 should not develop

VEVs.

2.2.1 Phenomenologically desirable vacuum

The phenomenologically desirable SSM vacuum is chosen by assigning nonzero VEVs to

some SM singlet fields such that

• unwanted exotics achieve heavy enough masses,

• U(1) gauge symmetries that are not observed at low energies are broken, and
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• R-parity violating couplings inducing too rapid proton decay are sufficiently sup-

pressed.

All the neutral singlets appearing in this model are listed in table 2.

To attain the aims mentioned above, let us choose a vacuum, as one possibility, on

which the following neutral singlets get vanishing or non-vanishing VEVs:

〈S0〉 6= 0, 〈S1〉 6= 0, · · · , 〈S13〉 6= 0, 〈S15〉 6= 0, 〈S23〉 6= 0, 〈S29〉 6= 0 (2.22)

〈S14〉 = 〈S16〉 = 〈S17〉 = · · · = 〈S22〉 = 〈S24〉 = 〈S25〉 = · · · = 〈S28〉 = 0.

In section 3, we will show that the non-vanishing VEVs in eqs. (2.22) are enough to give

heavy masses to all the exotics present in this model.

The VEVs of the singlets in eq. (2.22) break U(1) symmetries in eq. (2.7) except U(1)Y
and U(1)6, since all the neutral singlets don’t carry the charges of U(1)Y and U(1)6. The

U(1)6 generator is defined as Q6 = (08)(0, 0, 2; 05)′. In fact, all Q6 nonzero charges are

carried only by the exotics as shown in tables 14–20. All the observable matter fields are

neutral under U(1)6. Thus, in addition to photon there exists another strictly massless

U(1)6 gauge boson which is named as exotic photon (exphoton for abbreviation). Since it

couples only to superheavy exotic matter, the presence of the “exphoton” is phenomeno-

logically acceptable.

In tables 1 and 2, we displayed the U(1)Γ and U(1)Γ′ quantum numbers. The U(1)Γ
and U(1)Γ′ are linear combinations of U(1)s observed in this model. Their generators are

defined as

Γ = X − (Q2 + Q3) +
1

4
(Q4 + Q5) + 6(B − L), (2.23)

Γ′ = X +
1

4
(Q4 + Q5) + 6(B − L), (2.24)

where

Q2 = (05; 0, 2, 0)(08)′, Q3 = (05; 0, 0, 2)(08)′

Q4 = (08)(2, 0, 0; 05)′, Q5 = (08)(0, 2, 0; 05)′

X = (−2,−2,−2,−2,−2; 03)(08)′

B − L =

(

2

3
,
2

3
,
2

3
, 05

)

(08)′ (2.25)

Q4 and Q5 depend only on the hidden E′
8. The U(1)Γ symmetry will be used in section 5

for a discussion on R-parity. We put boxes for Γ(′) = ±1 singlet fields. A desirable vacuum

toward an exact R-parity might be the one with vanishing VEVs for all these boxed singlets.

If the R-parity is not exact, it should be an approximate symmetry valid at low energy

processes. These conditions should, of course, be consistent with other phenomenological

requirements such as large (small) enough exotic mass terms (µ term). In table 1, we also

boxed some D and D fields which have different type U(1)Γ quantum numbers from those

of d and dc quarks. Namely, if the parity defined from U(1)Γ is exact, these D and D do

not mix with light quarks d and dc.
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Note that the neutral singlets developing VEVs in eq. (2.22) carry only zero or negative

Γ′ charges: Γ′ = 0 or −1. In fact, 〈S29〉 break the parity, however, in section 5 we will also

show that the light fields can still have a useful approximate R-parity.

2.2.2 The third family in the untwisted sector

Sixteen chiral fields in eq. (2.13) form a family. One family appears in the untwisted sectors,

U1 and U3. SU(2)L doublets are in U1 and SU(2)L singlets are in U3. The remaining two

families arise from T 0
4 . Since the third family quarks are unique in being heavy, we assign

the third family to the untwisted sector fields. Indeed, there can exist cubic couplings for

the untwisted sector family by the coupling U1U2U3 allowed by the original selection rules

(a), (b), and (c). For this to be a viable interpretation, Hu and Hd in U2 must survive

down to the electroweak scale.

2.2.3 Light families and mixing angles

With the VEVs of eq. (2.22), the (reduced) selection rules allow also the mass terms of

the first two families of the SSM chiral matter. For example, Q and dc in the T 0
4 sector

can couple together with S7 or S1S5, if the oscillating number carried by S7 or S1S5 is

compensated by a proper CS. The cross terms, Q(U1)-d
c(T 0

4 ) and Q(T 0
4 )-dc(U3) are also

possible through S2
7 ·CS (or [S1S5]

2·CS). Thus the dc − d mass matrix, M (d) takes the form

Q(T 0
4 ) Q(T 0

4 ) Q(U1)

dc(T 0
4 )

dc(T 0
4 )

dc(U3)







a b x(d)

b a x(d)

x(d) x(d) z






〈Hd(U2)〉,

where z = S3
7 (or [S1S5]

3) and x(d) = S2
7 (or [S1S5]

2). Here we set 〈CS〉 = 1. The down-type

quark mass matrix is symmetric. For flavor democratic T 0
4 couplings, we have a common

entry a instead of a, b in the 2× 2 sub-matrix. But a flavor democratic form is one specific

representation of the S2 permutation symmetry. For a general S2 representation for T 0
4

sector fields, the upper left 2 × 2 sub-matrix is of the form given above. So, in general its

determinant is nonzero. To have nonzero mixing angles, the up-type quark mass matrix,

M (u), should not align to the down-type quark mass matrix, M (d). The up-type uc − u

quark mass matrix is

Q(T 0
4 ) Q(T 0

4 ) Q(U1)

uc(T 0
4 )

uc(T 0
4 )

uc(U3)







a′ b′ x(u)

b′ a′ x(u)

y(u) y(u) 1






〈Hu(U2)〉,

where

{a′, b′} = {S9, S3S4}, x(u) = {S7S9, S1S5S9, S7S3S4}, y(u) = {S8S9, S2S4S9, S8S3S4}.

a′ and b′ which are linear combinations of S9 and S3S4 can be different in principle. In

M (u), proper CS multiplications are assumed. Unlike M (d), M (u) is not symmetric.
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Similarly, the charged lepton mass matrix M (e) is

L(T 0
4 ) L(T 0

4 ) L(U1)

ec(T 0
4 )

ec(T 0
4 )

ec(U3)







a′′ b′′ x(e)

b′′ a′′ x(e)

y(e) y(e) 1






〈Hd(U2)〉,

where

{a′′, b′′} = {S7, S1S5}, x(e) = {S7S8, S1S5S8, S7S2S4}, y(e) = {S7S9, S1S5S9, S7S3S4}.

Neutrinos obtain mass. With the following Dirac and Majorana mass terms, the seesaw

type light neutrino masses are possible:

L(T 0
4 ) L(T 0

4 ) L(U1)

Dirac :

νc(T 0
4 )

νc(T 0
4 )

νc(U3)







c c x(ν)

c c x(ν)

y(ν) y(ν) 1






〈Hu(U2)〉,

νc(T 0
4 ) νc(T 0

4 ) νc(U3)

Majorana :

νc(T 0
4 )

νc(T 0
4 )

νc(U3)







M2 M2 M1

M2 M2 M1

M1 M1 M0







where

c = {S9, S3S4} x(ν) = {S8S9, S2S4S9, S8S3S4}, y(ν) = {S7S9, S1S5S9, S7S3S4},

and

M0 = [S23S29]
2[S7]

4, M1 = [S23S29]
2[S7]

3, M2 = [S23S29]
2[S7]

2.

Therefore, the vacuum (2.22) can give successful quark and lepton mass matrices.

2.2.4 Higgs doublets and µ term

Vectorlike electroweak doublet fields, Hu(Y = 1
2 ) and Hd(Y = −1

2), appear in U2, T 0
4 , T6,

T3, and T9. The selection rules (b) and (c) in section (2.2) allow interactions of U2U2×CS

and U2U2T6T6×CS. Among these interactions, [Hu(U2)Hd(U2)] × (S0 · CS + S10S13 · CS)

are present. We regard {Hu(U2),Hd(U2)} as the MSSM Higgs fields. TeV scale VEV of

(S0 · CS + S10S13 · CS) gives the MSSM “µ” term. We will discuss it again later.

The selection rules permit T6T6×CS couplings. So, Hu(T6)Hd(T6)×CS couplings are

present. Hence two pairs of Hu and Hd from T6 obtain heavy mass by string scale VEV of

CS. The selection rules admit also T 0
4 T 0

4 T 0
4 couplings. So there exist Hu(T 0

4 )Hd(T
0
4 )S6(T

0
4 )

couplings, from which two pairs of Hu and Hd in T 0
4 also become heavy by string scale

VEVs of S6.
3 There remains one Hd(T

0
4 ) at this level.

3We ignore a possible permutation symmetry at this level of study.
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Pairs Masses (×proper CS)

{Hu(U2), Hd(U2)} S0, S10S13

{Hu(U2), Hd(T6)} S10

{Hu(U2), Hd(T
0
4 )} S10S4

{Hu(U2), Hd(T3)} 0

{Hu(T6), Hd(U2)} S13

{Hu(T6), Hd(T6)} 1

{Hu(T6), Hd(T
0
4 )} S4

{Hu(T6), Hd(T3)} 0

{Hu(T 0
4 ), Hd(U2)} S13S5

{Hu(T 0
4 ), Hd(T6)} S5

{Hu(T 0
4 ), Hd(T

0
4 )} S6

{Hu(T 0
4 ), Hd(T3)} 0

{Hu(T9), Hd(U2)} S13S29

{Hu(T9), Hd(T6)} S29

{Hu(T9), Hd(T
0
4 )} S4S29

{Hu(T9), Hd(T3)} 1

Table 3: Mass terms for Hu and Hd. CS are products of singlet fields given in eq. (2.19). Proper

CS are assumed to be multiplied such that the H-momentum becomes (−1, 1, 1) mod (12, 3, 12).

We set 〈CS〉 = 1. For µ solution we assume that a modulus is involved in S0 or S10S13.

T3T9×CS couplings are also allowed. Thus, there exist couplings of Hu(T9)Hd(T3)×CS,

and by a VEV of CS one pair of {Hu(T9),Hd(T3)} is made heavy. Thus, there remains one

Hu(T9) also at this level.

The remaining Hd in T 0
4 and Hu in T9 can also be made heavy via the coupling

[Hu(T9)Hd(T
0
4 )] × 〈S4S29〉. This coupling is one of T9T

0
4 T 0

2 T9 interactions, which satisfies

the selection rules. To study the masses in more detail, we list the full HuHd couplings in

table 3.

Now we can represent a schematic form of the 7 × 7 HuHd mass matrix as

H0 H6 H6 H4 H4 H4 H3

H0

H6

H6

H4

H4

H9

H9

























△ ⋆ ⋆ ⋆′ ⋆′ ⋆′ 0

∗ × × > > > 0

∗ × × > > > 0

∗′ < < ∨ ∨ ∨ 0

∗′ < < ∨ ∨ ∨ 0

∗′′ ♦ ♦ ♦′ ♦′ ♦′ ×
∗′′ ♦ ♦ ♦′ ♦′ ♦′ ×

























. (2.26)

Here H0, H6, H4, and H9 indicate Hu(U2), Hu(T6), Hu(T4), and Hu(T9), respectively.

Similarly, H0 ≡ Hd(U2), H4 ≡ Hd(T
0
4 ), and H3 ≡ Hd(T3). △ denotes non-vanishing VEVs

by S0 and S10S13, △ ≡ S0 +S10S13. As mentioned earlier, we tacitly assume proper VEVs
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of CS, which are of string scale, are multiplied to fulfill the selection rule (b) discussed in

section 2.2. ×s stand for non-vanishing VEVs by CS. ⋆ and ⋆′ are VEVs of S10 and S10S4,

and ∗, ∗′, ∗′′ are those of S13, S13S5, S13S29. >, <, and ∨ correspond to VEVs of S4,

S5, and S6, respectively. ♦ and ♦′ are VEVs of S29 and S4S29. Since any neutral singlets

with non-vanishing VEVs do not carry positive Γ′ charges, zero entries in the above matrix

eq. (2.26), which are associated with Hd(T3), should be exactly zeros.

We suppose relatively small VEVs for S10 and S13 compared to the other VEVs of

neutral singlets:

S10, S13 . O(Mstring). (2.27)

Then the mixing angle between {Hu(U2),Hd(U2)} and the other Hu-Hd pairs is suppressed,

and the effective “µ” coefficient of Hu(U2)Hd(U2) is estimated as

µ ∼ S0 + O(S10S13/Mstring). (2.28)

If one VEV among S0, S10, and S13 is left undetermined at the string scale, µ is also

undetermined in the SUSY limit. With soft SUSY breaking terms, however, µ (and Higgs

VEVs) could be fixed around TeV scale. In the limit µ → 0, an accidental Peccei-Quinn

symmetry revives. We do not discuss it in this paper.

2.2.5 Vectorlike D−1/3 and D
1/3

The Qem= ∓1
3 colored fields D−1/3 and D

1/3
appear only in twisted sectors T6, T 0

4 T3, and

T9. Three pairs of {D(T6) and D(T6)} can be removed from low energy field spectra via

D(T6)D(T6)×CS.

The coupling D(T 0
4 )D(T 0

4 )S6(T
0
4 ) remove two pairs of D and D in T 0

4 , leaving one D

in T 0
4 . The coupling of the form D(T9)D(T3)×CS is present, and so one pair of D and D

is removed at this level, leaving one D in T9.

The remaining D(T 0
4 ) and D(T9) can be heavy via the two couplings [D(T9)D(T6)]×

〈S4S23 · CS〉 and [D(T6)D(T 0
4 )] × 〈S5 · CS〉. Note that here D(T6) and D(T6) are already

coupled to each other to have the mass term with a VEV of CS. Therefore it is obvious

that all {D,D} obtain masses. We list all D-D couplings in table 4.

The 8 × 8 D-D mass matrix is of the form

D6 D6 D6 D4 D4 D4 D3

D6

D6

D6

D4

D4

D9

D9

























× × × < < < 0

× × × < < < 0

× × × < < < 0

> > > ∨ ∨ ∨ ⊠

> > > ∨ ∨ ∨ ⊠

¤ ¤ ¤ ¤′ ¤′ ¤′ ×
¤ ¤ ¤ ¤′ ¤′ ¤′ ×

























, (2.29)

where D6,D4, etc. mean D(T6),D(T4), etc. ×, <, >, and ∨ entries stand again for VEVs

of CS, S5, S4, and S6, respectively. ¤, ¤′, and ⊠ denote VEVs of S23S4, S23S6, and S7S15.
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J
H
E
P
0
6
(
2
0
0
7
)
0
3
4

Pairs Masses (×proper CS)

{D(T6), D(T6)} 1

{D(T6), D(T4)} S5

{D(T6), D(T3)} 0

{D(T4), D(T6)} S4

{D(T4), D(T4)} S6

{D(T4), D(T3)} S7 S15

{D(T9), D(T6)} S23 S4

{D(T9), D(T4)} S23 S6

{D(T9), D(T3)} 1

Table 4: Mass terms for D and D. CS are products of singlet fields given in eq. (2.19). Proper CS

are assumed to be multiplied such that the H-momentum becomes (−1, 1, 1) mod (12, 3, 12). We

set 〈CS〉 = 1.

Through the mass terms in eq. (2.29), all Ds and Ds are paired to be superheavy. Mixing

terms between dcs in U3, T 0
4 and Ds in T6, T 0

4 , T9 can not arise in any manner. It is because

the negative Γ′ charges carried by such mixing terms cannot be compensated by neutral

singlets with non-zero VEVs.

This shows that the odd Γ and Qem= −1
3 quarks of table 1 can mix among themselves,

but not with D(T6), D(T 0
4 ), D(T6) and D(T 0

4 ), in the limit S23 → 0. So, the down-type

quarks have additional contribution to the mass matrix by mixing with D(T9) and D(T3),

and non-vanishing quark mixing is achieved in general.

Even if S15 = 0 (so ⊠ = 0), all D and D still obtain masses because the determinant

of eq. (2.29) is nonzero. If S23 = 0 (so ¤ = ¤′ = 0), however, the above type mass mixing

does not give a mass to one pair of D-D. Hence it seems necessary to have at least one Γ

odd singlet obtain a VEV. Let us choose the VEV 〈S23〉 as the parameter contributing to

P violating terms among the low energy fields.

3. Vectorlike exotics

Among the phenomenological conditions, the exotics mass condition must be satisfied at

any cost. In this model, exotic fields appears in the T±
1 , T±

2 , T±
4 , and T±

7 (or T±
5 ) sectors.

The color triplet exotics carry the electromagnetic charges of 0, ±1
3 . The doublet and singlet

exotics carry also fractional electromagnetic charges: Qem= ±2
3 ,∓1

3 . Color exotics could

form color singlet states with fractional electromagnetic charges. Searches for fractionally

charged particles have not given any positive evidence, and hence all exotics on the vacuum

we choose should be heavy enough. Let us proceed to discuss how the vectorlike exotic

states achieve masses.

3.1 Color exotics

In table (5), we list the color exotics found in our model. They are singlets under SU(2)L.
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J
H
E
P
0
6
(
2
0
0
7
)
0
3
4

Color exotics SU(3)c(Sector) (α or α)Qem

(

−7
12 , 5

12 , 5
12 ; 1

12 , 1
12 ; −5

12 , −1
12 , 3

12

)

(

3
12 , 5

12 , −4
12 ; 05

)′
3(T+

1 ) α0
1

(

5
6 , −1

6 , −1
6 ; 1

6 , 1
6 ; 1

6 , −1
6 , −1

2

)

(

1
2 , −1

6 , 1
3 ; 05

)′
3∗(T+

2 ) α0
2

(

−5
6 , 1

6 , 1
6 ; −1

6 , −1
6 ; −1

2 , −1
6 , −1

6

)

(−1
2 , 1

6 , −1
3 ; 05

)′
3(T−

2 ) α0
3

(

−5
6 , 1

6 , 1
6 ; −1

6 , −1
6 ; −1

6 , 1
6 , −1

2

)

(

0, −1
3 , −1

3 ; 05
)′

3(T+
4 ) 2 · α0

4
(

5
6 , −1

6 , −1
6 ; 1

6 , 1
6 ; −1

2 , 1
6 , 1

6

)

(

0, 1
3 , 1

3 ; 05
)′

3∗(T−
4 ) 3 · α0

5
(

2
3 , −1

3 , −1
3 ; 1

3 , 1
3 ; 1

3 , −1
3 , 0

)

(

0, −1
3 , −1

3 ; 05
)′

3∗(T+
4 ) 2 · α−1/3

6
(

−2
3 , 1

3 , 1
3 ; −1

3 , −1
3 ; 0, −1

3 , −1
3

)

(

0, 1
3 , 1

3 ; 05
)′

3(T−
4 ) 2 · α1/3

7

Table 5: Color exotics of Qem= 0,± 1

3
. Color 3 and 3∗ with Qem= ± 1

3
are exotics.

Pairs Masses (×proper CS)

1 × {α0
3(T

−
2 ), α0

2(T
+
2 )} S4S12

2 × {α0
4(T

+
4 ), α0

5(T
−
4 )} S9, S3S4

1 × {α0
1(T

+
1 ), α0

5(T
−
4 )} S9S13S29

2 × {α1/3
7 (T−

4 ), α
−1/3
6 (T+

4 )} S8, S2S4

Table 6: Mass terms for color exotics. CS are products of singlet fields given in eq. (2.19). Proper

CS are assumed to be multiplied such that the H-momentum becomes (−1, 1, 1) mod (12, 3, 12).

We set 〈CS〉 = 1.

As seen in the table, the color exotics are vectorlike under the SM gauge symmetry. They

all can achieve masses when the neutral singlets in eq. (2.22) get VEVs. To prove this, we

don’t have to study the full mass matrix for the vectorlike exotics. Instead, we will suggest

just some couplings enough to show that they are heavy. In table 6, we present the minimal

number of couplings yielding their masses. Since all the vectorlike exotics in table 5 can

pair up with neutral singlets, they can be removed from low energy field spectra.

3.2 Doublet exotics

In this model there are SU(2)L doublet fields carrying exotic electromagnetic charges.

They are SU(3)c singlets but possess the charges of Y = ±1
6 (or Qem = ±2

3 , ∓ 1
3). In

table 7, all doublet exotics are collected. All the vectorlike doublet exotics in table 7 could

achieve masses via couplings with neutral singlets developing VEVs. The minimal number

of couplings for them to be heavy are displayed in table 8. Hence, all the doublet exotics

can obtain masses.

3.3 Singlet exotics

There are 38 kinds (in terms of gauge quantum numbers) of singlet exotics, as collected

in tables 9. In these tables, ξ, ξ are Qem= ±2
3 singlets and η, η are Qem= ∓1

3 singlets.
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J
H
E
P
0
6
(
2
0
0
7
)
0
3
4

Doublet exotics [SU(2)L]Y (Sector) Label
(

−1
12 , −1

12 , −1
12 ; 7

12 , −5
12 ; 1

12 , 5
12 , −3

12

)

(

3
12 , 5

12 , −4
12 ; 05

)′
2−1/6(T+

1 ) δ1
(

1
12 , 1

12 , 1
12 ; −7

12 , 5
12 ; 3

12 , −1
12 , −1

12

)

(−9
12 , 1

12 , 4
12 ; 05

)′
21/6(T−

1 ) δ2
(

1
12 , 1

12 , 1
12 ; −7

12 , 5
12 ; 3

12 , −1
12 , −1

12

)

(

3
12 , 1

12 , −8
12 ; 05

)′
21/6(T−

1 ) δ3
(

1
6 , 1

6 , 1
6 ; 5

6 , −1
6 ; −1

6 , 1
6 , −1

2

)

(

0, −1
3 , −1

3 ; 05
)′

3 · 2−1/6(T+
4 ) δ4

(

−1
3 , −1

3 , −1
3 ; −2

3 , 1
3 ; 1

3 , −1
3 , 0

)

(

0, −1
3 , −1

3 ; 05
)′

2 · 2−1/6(T+
4 ) δ5

(

−1
6 , −1

6 , −1
6 ; −5

6 , 1
6 ; −1

2 , 1
6 , 1

6

)

(

0, 1
3 , 1

3 ; 05
)′

2 · 21/6(T−
4 ) δ6

(

1
3 , 1

3 , 1
3 ; 2

3 , −1
3 ; 0, −1

3 , −1
3

)

(

0, 1
3 , 1

3 ; 05
)′

2 · 21/6(T−
4 ) δ7

(

−1
12 , −1

12 , −1
12 ; 7

12 , −5
12 ; 1

12 , −7
12 , −3

12

)

(−3
12 , −1

12 , 8
12 ; 05

)′
2−1/6(T+

7 ) δ8
(

1
12 , 1

12 , 1
12 ; −7

12 , 5
12 ; −9

12 , −1
12 , −1

12

)

(−3
12 , −5

12 , 4
12 ; 05

)′
21/6(T−

7 ) δ9

Table 7: SU(2) doublet exotics with Qem= ± 2

3
,∓ 1

3
.

Pairs Masses (×proper CS)

1 × {δ4(T
+
4 ), δ2(T

−
1 )} S23

2 × {δ5(T
+
4 ), δ7(T

−
4 )} S8, S2S4

1 × {δ1(T
+
1 ), δ9(T

−
7 )} S9, S3S4

1 × {δ8(T
+
7 ), δ3(T

−
1 )} S8, S2S4

2 × {δ4(T
+
4 ), δ6(T

−
4 )} S9, S3S4

Table 8: Mass terms for doublet exotics. CS are products of singlet fields given in eq. (2.19).

Proper CS are assumed to be multiplied such that the H-momentum becomes (−1, 1, 1) mod

(12, 3, 12). We set 〈CS〉 = 1.

Singlet exotics of table 9 are vectorlike.

We find that fields with non-vanishing U(1)6 quantum numbers are only exotics. This

means that U(1)6 cannot be broken by VEVs of neutral singlets since neutral singlets

cannot be exotics. As mentioned before, however, the exactly massless U(1)6 gauge boson

(“exphoton”) is still phenomenologically acceptable, since all observable matter fields are

neutral under U(1)6.

In table 10, we present some mass terms of singlet exotics. In this mass table, we

tried to combine vectorlike pairs, not listing all off-diagonal terms as before. It would be

unwieldy to list all the off-diagonal terms for several tens of singlets. We note that in the

above vacuum (2.22), all exotic singlets obtain masses, as can be seen from the pairings

listed in table 10. But here it seems that Γ odd fields S15 and S23 are involved.
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J
H
E
P
0
6
(
2
0
0
7
)
0
3
4

States SM notation Label
`

1

3
, 1

3
, 1

3
; −1

3
, −1

3
; −1

3
, 1

3
, 0

´ `

−1

2
, −1

6
, −2

3
; 05

´′
12/3(T

+

2 ) ξ1
`

1

3
, 1

3
, 1

3
; −1

3
, −1

3
; −1

3
, 1

3
, 0

´ `

1

2
, −1

6
, 1

3
; 05

´′
12/3(T

+

2 ) ξ2
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; −5

6
, −1

6
, −1

2

´ `

1

2
, −1

6
, 1

3
; 05

´′
1−1/3(T

+

2 ) η1
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; 1

6
, −1

6
, 1

2

´ `

−1

2
, 5

6
, 1

3
; 05

´′
1−1/3(T

+

2 ) η2
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; 1

6
, −1

6
, 1

2

´ `

−1

2
, −1

6
, −2

3
; 05

´′
1−1/3(T

+

2 ) η3
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; 1

6
, −1

6
, 1

2

´ `

1

2
, −1

6
, 1

3
; 05

´′
2 · 1−1/3(T

+

2 ) η4, η5
`

−1

3
, −1

3
, −1

3
; 1

3
, 1

3
; 0, 1

3
, 1

3

´ `

−1

2
, 1

6
, −1

3
; 05

´′
1−2/3(T

−

2 ) ξ3
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

2
, −1

6
, 5

6

´ `

−1

2
, 1

6
, −1

3
; 05

´′
11/3(T

−

2 ) η6
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

2
, 5

6
, −1

6

´ `

−1

2
, 1

6
, −1

3
; 05

´′
11/3(T

−

2 ) η7
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; 1

2
, −1

6
, −1

6

´ `

1

2
, 1

6
, 2

3
; 05

´′
11/3(T

−

2 ) η8
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; 1

2
, −1

6
, −1

6

´ `

−1

2
, 1

6
, −1

3
; 05

´′
2 · 11/3(T

−

2 ) η9, η10
`

−1

3
, −1

3
, −1

3
; 1

3
, 1

3
; −2

3
, −1

3
, 0

´ `

0, −1

3
, −1

3
; 05

´′
2 · 1−2/3(T

+

4 ) ξ4
`

−1

3
, −1

3
, −1

3
; 1

3
, 1

3
; 1

3
, 2

3
, 0

´ `

0, −1

3
, −1

3
; 05

´′
2 · 1−2/3(T

+

4 ) ξ5
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

6
, −5

6
, −1

2

´ `

0, −1

3
, −1

3
; 05

´′
3 · 11/3(T

+

4 ) η11
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; 5

6
, 1

6
, −1

2

´ `

0, −1

3
, −1

3
; 05

´′
2 · 11/3(T

+

4 ) η12
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

6
, 1

6
, 1

2

´ `

0, 2

3
, 2

3
; 05

´′
2 · 11/3(T

+

4 ) η13
`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

6
, 1

6
, 1

2

´ `

0, −1

3
, −1

3
; 05

´′
6 · 11/3(T

+

4 ) η14, η15, η16
`

1

3
, 1

3
, 1

3
; −1

3
, −1

3
; 0, 2

3
, −1

3

´ `

0, 1

3
, 1

3
; 05

´′
2 · 12/3(T

−

4 ) ξ6
`

1

3
, 1

3
, 1

3
; −1

3
, −1

3
; 0, −1

3
, 2

3

´ `

0, 1

3
, 1

3
; 05

´′
2 · 12/3(T

−

4 ) ξ7
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; −1

2
, −5

6
, 1

6

´ `

0, 1

3
, 1

3
; 05

´′
3 · 1−1/3(T

−

4 ) η17
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; −1

2
, 1

6
, −5

6

´ `

0, 1

3
, 1

3
; 05

´′
3 · 1−1/3(T

−

4 ) η18
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; 1

2
, 1

6
, 1

6

´ `

0, −2

3
, −2

3
; 05

´′
2 · 1−1/3(T

−

4 ) η19
`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; 1

2
, 1

6
, 1

6

´ `

0, 1

3
, 1

3
; 05

´′
6 · 1−1/3(T

−

4 ) η20, η21, η22
`

−1

12
, −1

12
, −1

12
; 7

12
, 7

12
; 1

12
, −7

12
, −3

12

´ `

3

12
, 5

12
, −4

12
; 05

´′
1−2/3(T

+

1 ) ξ8
`

−1

12
, −1

12
, −1

12
; −5

12
, −5

12
; 1

12
, 5

12
, 9

12

´ `

3

12
, 5

12
, −4

12
; 05

´′
11/3(T

+

1 ) η23
`

5

12
, 5

12
, 5

12
; 1

12
, 1

12
; 7

12
, −1

12
, 3

12

´ `

3

12
, 5

12
, −4

12
; 05

´′
11/3(T

+

1 ) η24
`

−1

12
, −1

12
, −1

12
; −5

12
, −5

12
; 1

12
, −7

12
, −3

12

´ `

3

12
, 5

12
, −4

12
; 05

´′
11/3(T

+

1 ) η25
`

1

12
, 1

12
, 1

12
; 5

12
, 5

12
; −9

12
, −1

12
, −1

12

´ `

3

12
, 1

12
, −8

12
; 05

´′
1−1/3(T

−

1 ) η26
`

−1

12
, −1

12
, −1

12
; 7

12
, 7

12
; 1

12
, 5

12
, −3

12

´ `

−3

12
, −1

12
, 8

12
; 05

´′
1−2/3(T

+

7 ) ξ9
`

5

12
, 5

12
, 5

12
; 1

12
, 1

12
; −5

12
, −1

12
, 3

12

´ `

9

12
, −1

12
, −4

12
; 05

´′
11/3(T

+

7 ) η27
`

5

12
, 5

12
, 5

12
; 1

12
, 1

12
; −5

12
, −1

12
, 3

12

´ `

−3

12
, −1

12
, 8

12
; 05

´′
11/3(T

+

7 ) η28
`

−1

12
, −1

12
, −1

12
; −5

12
, −5

12
; 1

12
, 5

12
, −3

12

´ `

9

12
, −1

12
, −4

12
; 05

´′
11/3(T

+

7 ) η29
`

−1

12
, −1

12
, −1

12
; −5

12
, −5

12
; 1

12
, 5

12
, −3

12

´ `

−3

12
, −1

12
, 8

12
; 05

´′
11/3(T

+

7 ) η30
`

1

12
, 1

12
, 1

12
; −7

12
, −7

12
; 3

12
, −1

12
, −1

12

´ `

−3

12
, −5

12
, 4

12
; 05

´′
12/3(T

−

7 ) ξ10
`

1

12
, 1

12
, 1

12
; 5

12
, 5

12
; 3

12
, −1

12
, −1

12

´ `

9

12
, 7

12
, 4

12
; 05

´′
1−1/3(T

−

7 ) η31
`

1

12
, 1

12
, 1

12
; 5

12
, 5

12
; 3

12
, −1

12
, −1

12

´ `

−3

12
, 7

12
, −8

12
; 05

´′
1−1/3(T

−

7 ) η32
`

−5

12
, −5

12
, −5

12
; −1

12
, −1

12
; −3

12
, 5

12
, 5

12

´ `

−3

12
, −5

12
, 4

12
; 05

´′
1−1/3(T

−

7 ) η33
`

1

12
, 1

12
, 1

12
; 5

12
, 5

12
; 3

12
, −1

12
, −1

12

´ `

−3

12
, −5

12
, 4

12
; 05

´′
2 · 1−1/3(T

−

7 ) η34, η35

Table 9: Singlet exotics.

4. D and F flat directions

4.1 Anomalous U(1) and D flat directions

There are eight U(1) symmetries in this model. If there is an anomalous U(1), some of the

gauge symmetries are broken via the Fayet-Iliopoulos D-term. Indeed, our model has an

anomalous U(1)A whose charge is given in terms of the original eight U(1) charges as

QA = 24Y − 30(B − L) + Q1 + Q2 + Q3 + Q4 − Q5. (4.1)
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Pairs Masses (×proper CS)

1 × {ξ1(T
+
2 ), ξ9(T

+
7 )} S7S9 S23

1 × {ξ2(T
+
2 ), ξ3(T

−
2 )} S1S10

1 × {ξ10(T
−
7 ), ξ8(T

+
1 )} S8, S2S4

2 × {ξ6(T
−
4 ), ξ4(T

+
4 )} S9, S3S4

2 × {ξ7(T
−
4 ), ξ5(T

+
4 )} S7, S1S5

1 × {η1(T
+
2 ), η6(T

−
2 )} S4S10

1 × {η2(T
+
2 ), η7(T

−
2 )} S1S4S9

1 × {η3(T
+
2 ), η8(T

−
2 )} S5S11

{η4,5(T
+
2 ), η9,10(T

−
2 )} S5S11

2 × {η17(T
−
4 ), η12(T

+
4 )} S8, S2S4

1 × {η17(T
−
4 ), η27(T

+
7 )} S6S29

3 × {η18(T
−
4 ), η11(T

+
4 )} (S4S12)

2

2 × {η19(T
−
4 ), η13(T

+
4 )} S7, S1S5

{η20,21,22(T
−
4 ), η14,15,16(T

+
4 )} S7, S1S5

1 × {η26(T
−
1 ), η30(T

+
7 )} S9, S3S3

1 × {η31(T
−
7 ), η29(T

+
7 )} S1S7S12 S15 S29

1 × {η32(T
−
7 ), η28(T

+
7 )} S13 S23 S29

1 × {η33(T
−
7 ), η24(T

+
1 )} S7, S1S5

1 × {η34(T
−
7 ), η23(T

+
1 )} S7, S1S5

1 × {η35(T
−
7 ), η25(T

+
1 )} S8, S2S4

Table 10: Mass terms for singlet exotics. CS are products of singlet fields given in eq. (2.19).

Proper CS are assumed to be multiplied such that the H-momentum becomes (−1, 1, 1) mod

(12, 3, 12). We set 〈CS〉 = 1.

The Fayet-Iliopoulos D-term is

DA =
2g

192π2
TrQA +

∑

i

QA(i)φ∗(i)φ(i). (4.2)

As shown in appendix B, TrQA is negative, −50. For supersymmetry, the chosen vacuum

must satisfy 〈DA〉 = 0. Thus the summation
∑

i QA(i)φ∗(i)φ(i) for the nonzero VEVs

given in (2.22) should be positive. The VEVs in DA term potential can break a U(1) at

the SUSY minimum. To see how the remaining six U(1)s behave, in table 11 we list the

U(1) charges of those singlets with non-vanishing VEVs. The D-flatness conditions for the

remaining anomaly free U(1)g are

〈D(g)〉 =

〈

∑

i

Qg(i)φ
∗(i)φ(i)

〉

= 0, g = Y, a, b, · · · , e, 6. (4.3)

One could find the solution to DA = D(g) = 0 (g = Y, a, b, · · · , e, 6):

|S0|2 = |S4|2 − 2|S5|2 − |S6|2 − 7|S7|2 + 3|S8|2 + 3|S9|2 (4.4)

−|S10|2 + |S11|2 + |S12|2 − |S13|2 + |S23|2 −
7X2

1480
,
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Label P(f0) QY QA Qa Qb Qc Qd Qe Q6

S0(U2) 1 0 0 2 6 0 0 0 0

S1(T
0
2 ) 1 0 −4

3 0 −4
3

−19
3

−19
3

−4
3 0

S2(T
0
2 ) 1 0 −4

3 −2 −10
3

11
3

11
3

−4
3 0

S3(T
0
2 ) 1 0 −4

3 2 −10
3

11
3

11
3

−4
3 0

S4(T
0
2 ) 1+1 0 8

3 0 8
3

−7
3

−7
3

8
3 0

S5(T
0
2 ) 1+1 0 −4

3 0 8
3

11
3

11
3

−4
3 0

S6(T
0
4 ) 2 0 4

3 0 16
3

4
3

4
3

4
3 0

S7(T
0
4 ) 2+3+2 0 −8

3 0 4
3

−8
3

−8
3

−8
3 0

S8(T
0
4 ) 2+2+2 0 4

3 −2 −2
3

4
3

4
3

4
3 0

S9(T
0
4 ) 2+2+2 0 4

3 2 −2
3

4
3

4
3

4
3 0

S10(T6) 2 0 0 2 2 5 5 0 0

S11(T6) 2 0 0 −2 −2 −5 −5 0 0

S12(T6) 2 0 0 0 −4 5 5 0 0

S13(T6) 2 0 0 0 4 −5 −5 0 0

S15(T
0
1 ) 1 0 −85

6 0 4
3

19
3

−5
3

5
4 0

S23(T
0
7 ) 1 0 101

6 0 −8
3

−11
3

13
3

17
12 0

S29(T9) 2 0 31
2 0 0 6 −2 1

12 0

Table 11: U(1) charges of scalars developing nonzero VEVs.

|S1|2 = |S4|2 + |S6|2 − 7|S7|2 + 3|S8|2 + 3|S9|2 (4.5)

+|S10|2 − |S11|2 + |S12|2 − |S13|2 + |S23|2 −
17X2

1480
,

|S2|2 = 2|S4|2 − 2|S5|2 − 7|S7|2 + 6|S9|2 + |S23|2 −
2X2

1480
, (4.6)

|S3|2 = |S4|2 + |S6|2 + 3|S8|2 − 3|S9|2 − |S10|2 + |S11|2 − |S12|2 + |S13|2 −
9X2

1480
, (4.7)

|S15|2 = |S23|2 −
6X2

185
(4.8)

|S29|2 =
3X2

185
, (4.9)

where X2 ≡ −2g
192π2 TrQA. eq. (4.9) dictates S29 ∼ O(Mstring/100). The following hierarchi-

cal assumption for the VEVs could be consistent with eq. (4.5), (4.6), and (4.7):

1

2
|S3|2 ≈ |S6|2 ≈ |S11|2 & others. (4.10)

As we mentioned before U(1)6 remains unbroken since there is no neutral singlet carry-

ing a nonzero Q6. Thus, in addition to photon there exists another strictly massless U(1)6
gauge boson (exphoton). It couples only to superheavy exotic matter.

4.2 F flat directions

The neutral singlets in table 2 classified to the five categories as shown in table 12. The
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Classes Γ′ VEV Neutral singlets

I 0 non-zero S0, S1, S2, · · · , S13, S15, S23

II +1 zero S14, S19, S21, S25, S27, S28

III −1 (non-)zero S17, S22, S24, S26

IV 0 (non-)zero S16, S18, S20

V −1 non-zero S29

Table 12: Five classes of the neutral singlets.

singlets included in Class I, which do not carry U(1)Γ′ charges defined in eq. (2.23), are

assumed to develop VEVs. The singlets in Class V are also assumed to get VEVs, but

they carry the U(1)Γ charges of −1. On the other hand, the singlet states in Classes II,

III, and IV which carry Γ′ = ±1 or 0, do not obtain VEVs.

We note that the R-parity violating operators, ucdcdc, QLdc, LLec carry Γ′ = −1.

Thus, if VEVs by singlets carrying positive Γ′ charges are absent, as in our case, the

trilinear R-parity violating terms could not be induced in the superpotential. Hence, if

necessary, the singlets in III and IV, which all have the zero or negative Γ′ charges, can

be allowed to get VEVs. In this paper, however, for simplicity we consider only a vacuum

where all singlets in the classes III and IV do not obtain VEVs.

There exist superpotential terms constructed purely with the neutral singlet fields in

the class I:

W = S1S6S12 + S3S6S11 + S1S8S10 + S3S8S13 + S2S9S13 + S4S7S12

+S5S9S11 + S7S8S9 + S7S15S23 + S10S11 + S12S13 + · · · , (4.11)

where proper CS are assumed to be multiplied. As seen in eq. (2.20), CS are constructed

also with the singlets in Class I. In the Z12 orbifold compactification, if a superpotential

term w satisfies all the selections rules, then w12n+1 (n = 1, 2, 3, · · · ) also does. By including

the higher dimensional terms w13, w25, w37, · · · , one can find a vacuum where the singlets of

interest develop VEVs of string scale, preserving the F flatness conditions [10]. Moreover,

one can always find a re-scaling transformation for the VEVs, leaving intact the F flatness

conditions. Using this transformation, one can be consistent also the D flatness conditions

can be consistent [10, 19]. With this justification we assume that all the neutral singlets

of the class I achieve VEVs of order Mstring on a vacuum. As argued earlier, the selection

rule eq. (2.17) reduces to eq. (2.21) on such a vacuum.

Yukawa couplings containing two or more singlets with zero VEVs are trivial in sat-

isfying the F -flatness conditions. Thus, the couplings, in which two singlets or more from

II, III or IV are involved, do not provide non-trivial constraints for F -flatness. However, in

the presence of a coupling including only one singlet with vanishing VEV, F -flatness may

not be present unless there are more than two such terms.

In the superpotential, the singlets should couple to other fields such that Yukawa

couplings are neutral under U(1)Γ′ and also the other U(1) gauge symmetries: Γ′ charges

of singlets in the class III should be compensated by being coupled with those of singlets
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in II. Since all the singlets in II and III do not get VEVs, the couplings between II and

III do not provide non-trivial constraints for F -flatness. On the other hand, we should be

careful for the couplings between singlets in I and IV, and in II and V, because in these

cases couplings only one singlet with a vanishing VEV are possible. In this model, indeed,

one can find two or more allowed superpotential terms for each singlet in II. Therefore,

the F -flatness conditions, ∂W/∂S14 = ∂W/∂S16 = ∂W/∂S18 = · · · = ∂W/∂S28 = 0 can be

satisfied. D-flatness conditions can be satisfied by re-scaling of VEVs. However, in order to

get 〈S14〉 = 〈S16〉 = 〈S18〉 = · · · = 〈S28〉 = 0 as a F -flatness solution and also a µ solution,

many F -flatness conditions should turn out to be not independent ones.4

5. Vacuum with effective R parity

For the R-parity to be exact, it must be a subgroup of a U(1) gauge group, i.e. it must be

a discrete gauge symmetry [16], otherwise large gravitational corrections such as through

wormhole processes may violate it. Here, we can include the anomalous U(1) gauge sym-

metry in string compactification [20], since the matter anomaly is cancelled by the Green-

Schwarz mechanism [21]. Taking out the SM nonabelian gauge groups from the E8 sector

leaves five U(1)s among which U(1)Y cannot be used for the R-parity. Thus, for the

R-parity, we are left with four possibilities,

(B − L) = ( 2
3

2
3

2
3 0 0 0 0 0 ) (08)′

X = ( −2 −2 −2 −2 −2 0 0 0 ) (08)′

Q1 = ( 0 0 0 0 0 +2 0 0 ) (08)′

Q2 = ( 0 0 0 0 0 0 +2 0 ) (08)′

(5.1)

For example, another U(1) charge (−2,−2,−2,−2,−2,−2,−2, 0)(08)′ is the linear com-

bination X − Q1 − Q2. For an R-parity, we can use any odd number of U(1)s given in

eq. (5.1). The reason is the following. It is customarily assumed that the SO(10) subgroup

of E8 allows the spinor representation of SO(10). If it arises in the untwisted sector, it

must be of the form

([+ + + + +]; [+ + +]) (5.2)

where ± are ±1
2 , and the underline means all possible permutations and [ ] means even

numbers of sign flips among entries inside the bracket. For the representation (5.2), the

U(1) charges of (5.1) are odd. On the other hand, the Higgs doublets in SO(10) have the

form

(0 0 0 ±1 0;±1 0) (5.3)

which give even numbers of the U(1) charges of (5.1). We can define a good R-parity if

all the scalar fields developing VEVs carry even numbers of a U(1) charge, say Γ, a linear

combination of (5.1). Here, a conflict arises if the phenomenologically needed VEVs require

for some Γ odd fields to develop VEVs. Then, in general an exact parity cannot be defined.

4In general, all neutral singlets can develop VEVs with the F -flat and D-flat conditions satisfied [10].

Here, one can simply assume VEVs of S14, S16, · · · , S28 are small.

– 23 –



J
H
E
P
0
6
(
2
0
0
7
)
0
3
4

Let us note possible superpotential terms in the MSSM, generating ∆B 6= 0 operators,

d = 4 : ucdcdc, (5.4)

d = 5 : QQQL, ucucdcec (5.5)

where Q and L are quark and lepton doublets, respectively. The dimension-4 operator of

eq. (5.4) alone does not lead to proton decay, but that term together with the ∆L 6= 0

superpotential QLdc leads to a very fast proton decay and the product of their couplings

must satisfy a very stringent constraint, < 10−26. The d = 5 operators in (5.5) are not that

much dangerous, but still the couplings must satisfy constraints, < 10−7 [22, 14]. Thus,

our prime objective of introducing the R-parity is to forbid ucdcdc up to a sufficiently high

level.

A Z2 subgroup of a U(1) gauge symmetry is welcome for a definition of R-parity. The

continuous global U(1) symmetry, being broken by superpotential terms, is not good for an

R-parity. For this, we note that the Z2 subgroup of the U(1)X gauge group distinguishes

the spinor or the vector origin of our spectrum where

X = (−2,−2,−2,−2,−2, 0, 0, 0)(08)′. (5.6)

For distinguishing two kinds of parity quantum numbers in our model, actually we have a

better U(1) gauge symmetry, U(1)Γ, whose generator is

Γ = X − (Q2 + Q3) +
1

4
(Q4 + Q5) + 6(B − L) (5.7)

where

Q2 = (05; 0, 2, 0)(08)′, Q3 = (05; 0, 0, 2)(08)′ (5.8)

Q4 = (08)(2, 0, 06)′, Q5 = (08)(0, 2, 06)′ (5.9)

B − L = (
2

3
,
2

3
,
2

3
, 05)(08)′ . (5.10)

Q4 and Q5 in (5.7) affect only the hidden E′
8. In eq. (5.7), there is an odd number of

operators of eq. (5.1), and hence Γ is good for defining a parity. The Γ quantum numbers

of standard charge particles are listed in tables 1 and 2. Let us define the R-parity by

giving VEVs to some Γ = ±2, 0 neutral singlets,

U(1)Γ −→ Z2 ≡ P. (5.11)

The parity defined in this way is multiplicative. Then, the even integer fields carry P = +1

and the odd integer fields carry P = −1. The P allowed couplings must have the total P =

+1. A more restrictive condition is the U(1)Γ gauge invariance of couplings:
∑

i Γ(zi) = 0,

which must be satisfied for the coupling to be present in the original theory.

Inspecting the Γ quantum numbers in the tables, we find that the following fields are

possessing ‘strange’ Γs in defining the R-parity:

D(T 0
4 ), D(T 0

4 ), D(T6), D(T6), (5.12)

S15, S16, S18, S20, S23 (5.13)
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which are boxed in tables and 1 and 2. Fields in (5.12) carry the familiar charge Qem= −1
3

down type charge but carry even Γs, Qem= 0 neutral singlets in (5.13) are the familiar

neutral Higgs fields but they carry odd Γs. To have an exact R-parity, neutral singlets S15,

S16, S18, S20, and S23 (the boxed ones) in table 2 should not develop VEVs. But then, the

leftover pair in table 4 cannot obtain mass since D(T 0
4 ) carries P = 2 and D(T9) carries

P = −1. To give them mass, some of S15, S16, S18, S20, and S23 should develop VEV(s).

These VEVs violate the R-parity, i.e. P . So, in our model R-parity violation is inevitable

to give large masses to exotics.

5.1 R parity violation

As mentioned above, the dimension-5 operators of the form QQQL and ucucdcec, allowed by

R-parity, are known to be safe for the proton lifetime constraint in string compactification

models [13]. To constrain the R-parity violation from the ∆B 6= 0 processes, therefore,

we focus on dimension-4 superpotential terms of the form ucdcdc attached with some of

S15, S16, S18, S20, and S23. If there does not exist any such term, the R-parity violation

is safe from the proton lifetime bound. The mixing of D(T 0
4 ) with dc is O(10−16) for

mD(T 0
4
) = O(1016)GeV, and hence we will not consider the R-parity preserving coupling,

ucdcD(T 0
4 ).

To study the non-renormalizable couplings, we need products of singlets having non-

vanishing VEVs, shown in eq. (2.22). Among these, non-vanishing Γs are carried by S0(Γ =

2), S15(T
0
1 ,Γ = −1), and S23(T

0
7 ,Γ = −1), S29(T9,Γ = −2). Since ucdcdc carries Γ = −3,

we need singlet products having Γ = +3. So we must satisfy two conditions: inclusion of

S0 and inclusion of an odd number of S15 and S23. Of course, the H-momentum rules and

the gauge invariance conditions must be satisfied. Let us consider the following example

of Γ = 3,

2S0 × S15 × any number of {S1, · · · , S13}. (5.14)

Eq. (5.14) contains two U2 fields and one T 0
1 field. With one T 0

1 , however, we cannot

satisfy the modular invariance condition, eq. (2.18), since all fields in {S1, · · · , S13} are

even twisted. So, the form (5.14) is not allowed. A similar conclusion is drawn if we

replace S15 by S23 in eq. (5.14). Even if 〈S15〉 6= 0 and 〈S23〉 6= 0, therefore, the coupling

ucdcdc is not generated to all orders.

Actually, there is a simpler argument for the absence of dimension 4 operators such

as ucdcdc. It comes from the U(1)Γ′ conservation. ucdcdc (and also QLdc, LLec) carries

Γ′ = −1, and the neutral singlets having VEVs do not carry S with positive Γ′. So, ucdcdc

is forbidden to all orders.

However by 〈S15〉 6= 0 and 〈S23〉 6= 0, dc and D(T 0
4 , T6) can mix. Eventually, this kind

of mixing violates the R-parity. But the violation will be suppressed by

O

(

mb

mD

)

∼ 10−16.

A similar analysis can be done for ∆B = 0,∆L 6= 0 and R conserving operator

D(T 0
4 , T6)QL. Since proton decay with dimesion 4 operators needs both of ucdcdc and
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D(T 0
4 , T6)QL, we will have the following suppression factor for proton decay operator,

O

(

mb

mD

)2

∼ 10−32 (5.15)

which is completely negligible. Then, proton decay proceeds dominantly by the dimension

5 operators [22]. Being an SSM, gauge boson exchanges do not lead to proton decay. But

it is not clear whether p → e+ + (K,K)0 dominates over p → e+ + π0 since there is no

reason that d = 5 non-renormalizable couplings are flavor distinguished.

5.2 Effective R parity of light particles and CDM candidate

The observation that the modular invariance condition removes the coupling of the

form (5.14) hints that there might be an effective R-parity among light (electroweak scale)

particles. It arises from the fact that the odd R singlets of table 2 are in odd twisted sec-

tors, and we need odd number of these odd twisted sector VEVs to have R-parity violating

couplings. But the odd number of twisted sectors cannot make modular invariant Yukawa

couplings since the other non-vanishing VEVs are carried by the fields in the even twisted

sectors.

νc in eq. (2.13) can obtain a large mass by singlet VEVs, and considered to be in

the intermediate scale. We consider Hu(U2) and Hd(U2) are the electroweak scale Higgs

doublets. All the other vectorlike pairs in table 1 are considered to be at the string scale.

Thus, the light particles of table 1 are Q, dc, uc, L, ec of eq. (2.13), which carry P = 1. If

we assume that boxed fields in table 2 are superheavy, the light (electroweak scale) Higgs

fields, including neutral singlets, carry even P quantum numbers. In this way, we have an

effective R-parity among light fields. But the original theory does not respect the R-parity,

including all particles. However, this R-parity violation must include heavy particles at the

string scale, which is not phenomenologically harmful. Since any R-parity violation among

light particles must occur at least with a suppression factor of O(Mstring) for ∆B = 0 and

∆L 6= 0 operators, the lightest supersymmetric particle (LSP) defined among light fields

must live at least 1022 years, estimated by multiplying (mLSP/mp)
5 to the proton lifetime

estimate obtained from dimension 5 operators. Therefore, even though the R-parity is

not exact, we have a cold dark matter (CDM) candidate LSP which lives sufficiently long

enough.

6. Model without exotics

The VEVs given in eq. (2.22) break U(1)gauge symmetries with leaving only (SM gauge

group)×[SO(10) × U(1)6]
′. Because the SM fields are completely blind to U(1)′6, it is pos-

sible to break a linear combination of U(1)em and U(1)′6, leaving only one U(1) unbroken.

Let us call this unbroken U(1) the U(1) of quantum electrodynamics, Ũ(1)em. We choose

the symmetry breaking direction such that there does not appear any exotics, i.e. Ũ(1)em
charges of particles are integers for color singlets, +2

3 ,−1
3 for color triplets (3), and −2

3 ,+1
3

for color anti-triplets (3∗). The electroweak hypercharge direction (2.9) fulfils this possi-

bility.
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Ỹ from (2.9) SU(3)c × SU(2)L Exotics in Model E

−1
3 (3,1) α0

1, α0
3, 2 · α0

4

+1
3 (3∗,1) α0

2, 3 · α0
5

−2
3 (3∗,1) 2 · α−1/3

6

+2
3 (3,1) 2 · α1/3

7

−1
2 (1,2) δ1, δ3, 3 · δ4, 2 · δ5

1
2 (1,2) δ2, 2 · δ6, 2 · δ7, δ8, δ9

ξ1, η1, η2, η4,5, η6, η7, η9,10, 3 · η11, 2 · η12,

0 (1,1) 2 · η14,15,16, 3 · η17, 3 · η18, 2 · η20,21,22,

η23, η24, η25, ξ9, η27, η29, η31, η33, η34,35

−1 (1,1) η3, ξ3, 2 · ξ4, 2 · ξ5, 2 · η19, ξ8, η26, η32

+1 (1,1) ξ2, η8, 2 · η13, 2 · ξ6, 2 · ξ7, η28, η30, ξ10

Table 13: Model S contains no exotics. Previous exotics carry the standard charges as shown in

the first column. The charges of the remaining states in Model S are the same as those in Model E.

This is achieved by giving a VEV(s) to an exotic singlet(s). For instance, let us choose

just η1 and η6. Both 〈η1η6〉 = 0 (Model E) and 〈η1η6〉 6= 0 (Model S) can be consistent

with SUSY, because the superpotential allows W = η1η6S4S10 + (η1η6S4S10)
13 + · · · , and

both vacua can satisfy the F - and D-flatness conditions. If 〈η1η6〉 6= 0, the surviving U(1)

gauge symmetry is a linear combination of U(1)Y and U(1)6, i.e. eq. (2.9)

Ỹ = Y +
1

2
Q6. (6.1)

Under this new U(1)Ỹ, all the exotics in Model E carry the regular hypercharges observed in

the SSM. With the new U(1)Ỹ, thus, all the exotics found in Model E are moved into states

with the standard charges as shown in table 13. They still form vectorlike representations

under the SM gauge symmetry. Their mass terms discussed in section 3 are still valid. On

the other hand, the regularly charged states in Model E, which originate from U , T3, T6, T9

and T 0
k (k = 1, 2, 4, 7) sectors, are not affected by this addition since they were not charged

under U(1)6 in the beginning. As mentioned below eq. (2.9), the hypercharge operator in

Model S gives sin2θ0
W = 3

14 at the string scale. In this case, therefore, more (vectorlike)

SU(3)c triplets and SU(2)L doublets at intermediate mass scales would be needed to explain

sin2θW ≈ 0.23 at the electroweak scale. The discussion on the effective R-parity is similar

to that of Model E.

In this short section, we observed that models without exotics are possible, but in such

models it might be difficult to obtain sin2 θ0
W = 3

8 at the string scale.

7. Conclusions

We have constructed an SSM from a Z12−I orbifold compactification. In the vacuum chosen

in (2.22), we achieve
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• An SSM with three families with the third family in the untwisted sector,

• At the string scale, sin2θ0
W = 3

8 ,

• It is possible to have one pair of light Higgs doublets Hu and Hd from the untwisted

sector,

• There exist Yukawa couplings for phenomenologically satisfactory quark and lepton

masses,

• All vectorlike color triplets D and D obtain masses,

• All exotic particles are vectorlike and obtain masses,

• D- and F -flat directions are possible,

• An effective R-parity (more accurately an effective matter parity), P , can be embed-

ded as a discrete group of gauged U(1)Γ,

• All exotics carry nonzero U(1)6 quantum numbers,

• U(1)em and U(1)6 are not broken. Therefore, there exist at least two massless color

singlet gauge bosons: photon and exphoton (meaning the massless gauge boson cou-

pling to exotic particles only).

• If U(1)em and U(1)6 are properly broken to give Ũ(1)em unbroken, then one can

convert all exotics into states with the standard charges.

In sum we have shown that there exists a very satisfactory string vacuum which meets

all phenomenological constraints. At the least, this paper shows the existence proof of the

MSSM from superstring. But why the VEVs of eq. (2.22) should be taken as given there

is not understood yet in this paper.
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A. Massless Spectrum

The model presented in eq. (2.1) gives

V 2 − φ2 = 1, a2
3 = 4, V · a3 = 1, (A.1)

V 2
+ − φ2 = 7, V 2

− − φ2 = 3. (A.2)

Then, the gauge group is

[

{SU(3)c × SU(2)L × U(1)Y} × U(1)B−L × U(1)3
]

×
[

SO(10) × U(1)3
]′

. (A.3)
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P · V Visible States χ SM
7
12 (+ + −; +−; + + +) L Q

(U1) (−−−; +−; + −−) L L

(0, 0, 0; 1, 0; 0, 0, 1) L Hd
4
12 (U2) (0, 0, 0;−1, 0;−1, 0, 0) L Hu

(0, 0, 0; 0, 0; 1, 0,−1) L 10 ≡ S0

(+ −−;−−; + + +) L dc

1
12 (+ + +;++;+ + +) L νc

(U3) (+ −−; ++;+ −−) L uc

(+ + +;−−;− + −) L ec

Table 14: Visible sector chiral fields from the U sector. There is no hidden sector chiral fields in

the U sector.

P + 6V χ (NL)j Θ0 P6 SM
(

1, 0, 0; 0, 0; 03
) (−1

2 , 1
2 ; 06

)′
L 0 −1

3 3 3 · D1/3

(

−1, 0, 0; 0, 0; 03
) (

1
2 , −1

2 ; 06
)′

L 0 −1
3 3 3 · D−1/3

(

0, 0, 0; 1, 0; 03
) (

1
2 , −1

2 ; 06
)′

L 0 1
6 2 2 · Hd

(

0, 0, 0;−1, 0; 03; 03
) (−1

2 , 1
2 ; 06

)′
L 0 1

6 2 2 · Hu
(

05; 1, 0, 0
) (−1

2 , 1
2 ; 06

)′
L 0 −1

6 2 2 · 10
(

05;−1, 0, 0
) (

1
2 , −1

2 ; 06
)′

L 0 1
2 2 2 · 10

(

05; 0, 0, 1
) (−1

2 , 1
2 ; 06

)′
L 0 1

2 2 2 · 10
(

05; 0, 0,−1
) (

1
2 , −1

2 ; 06
)′

L 0 −1
6 2 2 · 10

Table 15: Massless states satisfying (P + 6V ) · W = 0 mod Z in T6.

In this model, there are eight U(1) symmetries whose charges are

Y =

(

1

3
,
1

3
,
1

3
;
−1

2
,
−1

2
; 03

)

(

08
)′

(A.4)

B − L =

(

2

3
,
2

3
,
2

3
; 02; 03

)

(

08
)′

(A.5)

Q1 =
(

05; 2, 0, 0
) (

08
)′

(A.6)

Q2 =
(

05; 0, 2, 0
) (

08
)′

(A.7)

Q3 =
(

05; 0, 0, 2
) (

08
)′

(A.8)

Q4 =
(

08
) (

2, 0, 0; 05
)′

(A.9)

Q5 =
(

08
) (

0, 2, 0; 05
)′

(A.10)

Q6 =
(

08
) (

0, 0, 2; 05
)′

. (A.11)
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P + 3V χ (NL)j ΘL,R SM [SO(10)′]
(

3
4 , −1

4 , −1
4 ; −1

4 , −1
4 ; 1

4 , 1
4 , 1

4

)

(

3
4 , 1

4 , 0; 05
)′

L 0 1
3 D

1/3

(

3
4 , −1

4 , −1
4 ; −1

4 , −1
4 ; 1

4 , 1
4 , 1

4

)

(

3
4 , 1

4 , 0; 05
)′

R 0 0 2 · D−1/3 ∗, or

L (2 · D−1/3 from T9)
(

−1
4 , −1

4 , −1
4 ; 3

4 , −1
4 ; 1

4 , 1
4 , 1

4

)

(−1
4 , −3

4 , 0; 05
)′

L 0 1
3 Hd

(

−1
4 , −1

4 , −1
4 ; 3

4 , −1
4 ; 1

4 , 1
4 , 1

4

)

(−1
4 , −3

4 , 0; 05
)′

R 0 0 2 · H∗
u, or

L (2 · Hu from T9)
(−1

4 , −1
4 , −1

4 ; −1
4 , −1

4 ; −3
4 , 1

4 , 1
4

) (−1
4 , −3

4 , 0; 05
)′

L 0 −1
3 10

(−1
4 , −1

4 , −1
4 ; −1

4 , −1
4 ; −3

4 , 1
4 , 1

4

) (−1
4 , −3

4 , 0; 05
)′

R 0 1
3 10

∗
(−1

4 , −1
4 , −1

4 ; −1
4 , −1

4 ; 1
4 , 1

4 , −3
4

) (−1
4 , −3

4 , 0; 05
)′

L 0 0 2 · 10
(−1

4 , −1
4 , −1

4 ; −1
4 , −1

4 ; 1
4 , 1

4 , −3
4

) (−1
4 , −3

4 , 0; 05
)′

R 0 −1
3 10

∗
(

1
4 , 1

4 , 1
4 ; 1

4 , 1
4 ; −1

4 , −1
4 , −1

4

) (

3
4 , 1

4 , 0; 05
)′

L 11, 13
1
3 2 · 10

(

1
4 , 1

4 , 1
4 ; 1

4 , 1
4 ; −1

4 , −1
4 , −1

4

) (

3
4 , 1

4 , 0; 05
)′

R 11, 13 0 3 · 10
∗

(

1
4 , 1

4 , 1
4 ; 1

4 , 1
4 ; −1

4 , −1
4 , −1

4

) (−1
4 , 1

4 , 0;±1, 04
)′

L 0 0 2 · 10 [10′]
(

1
4 , 1

4 , 1
4 ; 1

4 , 1
4 ; −1

4 , −1
4 , −1

4

) (−1
4 , 1

4 , 0;±1, 04
)′

R 0 −1
3 10

∗ [10′]

Table 16: Massless states satisfying (P + 3V ) ·W = 0 mod Z in T3. The starred chirality R fields

in T3 can be represented also by un-starred chirality L fields with the opposite quantum numbers in

T9, as shown in two lines. There are, in total, three 10′s of the hidden SO(10)′ from the T3 and T9

sectors. The other states in T3 and T9 are singlets under the hidden gauge group. The multiplicity

is shown as the coefficient in the last column.

There are two familiar U(1) charges

Y =

(

1

3
,
1

3
,
1

3
;
−1

2
,
−1

2
; 0, 0, 0

)

(

08
)′

, (A.12)

QB−L ≡ B − L =

(

2

3
,
2

3
,
2

3
; 0, 0; 0, 0, 0

)

(

08
)′

. (A.13)

Note that X of the flipped SU(5) is a combination of B − L and Y ,

X = (−2,−2,−2,−2,−2, ; 0, 0, 0)
(

08
)′

= −5(B − L) + 4Y. (A.14)

The U(1)Γ charge used in the text is

Γ = X +
1

4
(Q4 + Q5) − (Q2 + Q3) + 6(B − L). (A.15)

Using the technique and notation of [11], massless fields are calculated. In table 14,

we list the massless fields from the untwisted sector. There is one singlet S0 which cannot

be a member of the SO(10) spinor. In tables 15 and 16, we list massless fields in T6 and

T3(and T9) which are not affected by Wilson lines. In tables 17, 18, 19, and 20, we list

massless fields of T2, T4, T1, and T5 sectors, respectively. For the SM particles, we use the

familiar notations: Q,uc, dc, L, ec, νc for sixteen fields of the SM and S for SO(10)′ singlets.
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P + 2V χ (NL)j P2(f0) SM
(

05; −2
3 , −2

3 , −1
3

)

(1
2 , −1

2 ; 06)′ L 0 1 10
(

05; −2
3 , 1

3 , 2
3

)

(−1
2 , 1

2 ; 06)′ L 0 1 10
(

05; 1
3 , −2

3 , 2
3

)

(−1
2 , 1

2 ; 06)′ L 0 1 10
(

05; 1
3 , 1

3 , −1
3

)

(1
2 , −1

2 ; 06)′ L 21̄, 23 1 + 1 2 · 10
(

05; 1
3 , 1

3 , −1
3

)

(−1
2 , 1

2 ; 06)′ L 12̄, {11̄ + 13} 1 + 1 2 · 10

P + 2V+ χ (NL)j P2(f+) SM
(

5
6 , −1

6 , −1
6 ; 1

6 , 1
6 ; 1

6 , −1
6 , −1

2

)

(

1
2 , −1

6 , 1
3 ; 05

)′
L 0 1 α0

(

1
3 , 1

3 , 1
3 ; −1

3 , −1
3 ; −1

3 , 1
3 , 0

) (−1
2 , −1

6 , −2
3 ; 05

)′
L 0 1 ξ2/3

(

1
3 , 1

3 , 1
3 ; −1

3 , −1
3 ; −1

3 , 1
3 , 0

) (

1
2 , −1

6 , 1
3 ; 05

)′
L 13 1 ξ2/3

(−1
6 , −1

6 , −1
6 ; 1

6 , 1
6 ; −5

6 , −1
6 , −1

2

) (

1
2 , −1

6 , 1
3 ; 05

)′
L 0 1 η−1/3

(−1
6 , −1

6 , −1
6 ; 1

6 , 1
6 ; 1

6 , −1
6 , 1

2

) (−1
2 , 5

6 , 1
3 ; 05

)′
L 0 1 η−1/3

(−1
6 , −1

6 , −1
6 ; 1

6 , 1
6 ; 1

6 , −1
6 , 1

2

) (−1
2 , −1

6 , −2
3 ; 05

)′
L 13 1 η−1/3

(−1
6 , −1

6 , −1
6 ; 1

6 , 1
6 ; 1

6 , −1
6 , 1

2

) (

1
2 , −1

6 , 1
3 ; 05

)′
L 21̄, 23 1 + 1 2 · η−1/3

P + 2V− χ (NL)j P2(f−) SM
(

−5
6 , 1

6 , 1
6 ; −1

6 , −1
6 ; −1

2 , −1
6 , −1

6

)

(−1
2 , 1

6 , −1
3 ; 05

)′
L 0 1 α0

(−1
3 , −1

3 , −1
3 ; 1

3 , 1
3 ; 0, 1

3 , 1
3

) (−1
2 , 1

6 , −1
3 ; 05

)′
L 13 1 ξ

−2/3

(

1
6 , 1

6 , 1
6 ; −1

6 , −1
6 ; −1

2 , −1
6 , 5

6

) (−1
2 , 1

6 , −1
3 ; 05

)′
L 0 1 η1/3

(

1
6 , 1

6 , 1
6 ; −1

6 , −1
6 ; −1

2 , 5
6 , −1

6

) (−1
2 , 1

6 , −1
3 ; 05

)′
L 0 1 η1/3

(

1
6 , 1

6 , 1
6 ; −1

6 , −1
6 ; 1

2 , −1
6 , −1

6

) (

1
2 , 1

6 , 2
3 ; 05

)′
L 13 1 η1/3

(

1
6 , 1

6 , 1
6 ; −1

6 , −1
6 ; 1

2 , −1
6 , −1

6

) (−1
2 , 1

6 , −1
3 ; 05

)′
L 12̄, {11̄ + 13} 1 + 1 2 · η1/3

Table 17: Chiral matter fields satisfying Θ0 = 0 in the T 0
2 sector, Θ+ = 0 in the T +

2 sector, and

Θ− = 0 in the T−

2 sector.

The Higgs doublets are denoted by Hu and Hd. The color triplets with Qem= −1
3 , which

in principle can mix with d, are denoted as D.

Exotic particles appear in the sectors affected by Wilson lines: T±
2 , T±

4 , T±
1 , and T±

5 .

For these exotics, we use the following notations:

αi, αj : color exotics 3 and 3∗

δi, δj : SU(2) doublet exotics (A.16)

ξi, ξj : Qem = ±2

3
SU(3) × SU(2) singlet exotics

ηi, ηj : Qem = ∓1

3
SU(3) × SU(2) singlet exotics

If some exotics do not obtain mass, the model must be excluded from phenomenological

consideration. In the text, we have shown that all exotics obtain masses. This massive

exotics condition determines the vacuum where nonvanishing VEVs of S fields are dictated.

There are many possibilities for giving masses to exotic particles. In this paper, we chose

the minimum number of neutral singlet VEVs, eq. (2.22).
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H
E
P
0
6
(
2
0
0
7
)
0
3
4

P + 4V χ (NL)j Θ0 P4(f0) SM
`

+ −−;−−; 1

6
, 1

6
, −1

6

´

(08)′ L 0 −1

4
2 2 · dc

`

−−−;+−; 1

6
, 1

6
, −1

6

´

(08)′ L 0 −1

4
2 2 · L

`

+ −− + +; 1

6
, 1

6
, −1

6

´

(08)′ L 0 1

4
2 2 · uc

`

+ + −; +−; 1

6
, 1

6
, −1

6

´

(08)′ L 0 1

4
2 2 · Q

`

+ + +;−−; 1

6
, 1

6
, −1

6

´

(08)′ L 0 1

4
2 2 · ec

`

+ + +;++; 1

6
, 1

6
, −1

6

´

(08)′ L 0 −1

4
2 2 · νc

`

1, 0, 0; 0, 0; −1

3
, −1

3
, 1

3

´

(08)′ L 0 0 3 3 · D
1/3

`

−1, 0, 0; 0, 0; −1

3
, −1

3
, 1

3

´

(08)′ L 0 1

2
2 2 · D−1/3

`

0, 0, 0; 1, 0; −1

3
, −1

3
, 1

3

´

(08)′ L 0 0 3 3 · Hd
`

0, 0, 0;−1, 0; −1

3
, −1

3
, 1

3

´

(08)′ L 0 1

2
2 2 · Hu

`

0, 0, 0; 0, 0; 2

3
, 2

3
, −2

3

´

(08)′ L 0 1

2
2 2 · 10

`

0, 0, 0; 0, 0; −1

3
, −1

3
, −2

3

´

(08)′ L 11̄, 12, 13
−1

4
, 0, 1

4
2 + 3 + 2 7 · 10

`

0, 0, 0; 0, 0; −1

3
, 2

3
, 1

3

´

(08)′ L 11̄, 12, 13
1

4
, 1

2
, −1

4
2 + 2 + 2 6 · 10

`

0, 0, 0; 0, 0; 2

3
, −1

3
, 1

3

´

(08)′ L 11̄, 12, 13
1

4
, 1

2
, −1

4
2 + 2 + 2 6 · 10

P + 4V+ χ (NL)j Θ+ P4(f+) SM
“

−5

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

6
, 1

6
, −1

2

”

`

0, −1

3
, −1

3
; 05

´′
L 0 1

2
2 2 · α0

“

2

3
, −1

3
, −1

3
; 1

3
, 1

3
; 1

3
, −1

3
, 0

”

`

0, −1

3
, −1

3
; 05

´′
L 0 1

4
2 2 · α−1/3

“

1

6
, 1

6
, 1

6
; 5

6
, −1

6
; −1

6
, 1

6
, −1

2

”

`

0, −1

3
, −1

3
; 05

´′
L 0 0 3 3 · δ

−1/6

“

−1

3
, −1

3
, −1

3
; −2

3
, 1

3
; 1

3
, −1

3
, 0

”

`

0, −1

3
, −1

3
; 05

´′
L 0 −1

4
2 2 · δ

−1/6

`

−1

3
, −1

3
, −1

3
; 1

3
, 1

3
; −2

3
, −1

3
, 0

´ `

0, −1

3
, −1

3
; 05

´′
L 0 1

4
2 2 · ξ

−2/3

`

−1

3
, −1

3
, −1

3
; 1

3
, 1

3
; 1

3
, 2

3
, 0

´ `

0, −1

3
, −1

3
; 05

´′
L 0 −1

4
2 2 · ξ

−2/3

`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

6
, −5

6
, −1

2

´ `

0, −1

3
, −1

3
; 05

´′
L 0 0 3 3 · η1/3

`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; 5

6
, 1

6
, −1

2

´ `

0, −1

3
, −1

3
; 05

´′
L 0 1

2
2 2 · η1/3

`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

6
, 1

6
, 1

2

´ `

0, 2

3
, 2

3
; 05

´′
L 0 1

4
2 2 · η1/3

`

1

6
, 1

6
, 1

6
; −1

6
, −1

6
; −1

6
, 1

6
, 1

2

´ `

0, −1

3
, −1

3
; 05

´′
L 11̄, 12, 13

1

4
, 1

2
, −1

4
2 + 2 + 2 6 · η1/3

P + 4V− χ (NL)j Θ− P4(f−) SM
“

5

6
, −1

6
, −1

6
; 1

6
, 1

6
; −1

2
, 1

6
, 1

6

”

`

0, 1

3
, 1

3
; 05

´′
L 0 0 3 3 · α0

“

−2

3
, 1

3
, 1

3
; −1

3
, −1

3
; 0, −1

3
, −1

3

”

`

0, 1

3
, 1

3
; 05

´′
L 0 1

4
2 2 · α1/3

“

−1

6
, −1

6
, −1

6
; −5

6
, 1

6
; −1

2
, 1

6
, 1

6

”

`

0, 1

3
, 1

3
; 05

´′
L 0 1

2
2 2 · δ1/6

“

1

3
, 1

3
, 1

3
; 2

3
, −1

3
; 0, −1

3
, −1

3

”

`

0, 1

3
, 1

3
; 05

´′
L 0 −1

4
2 2 · δ1/6

`

1

3
, 1

3
, 1

3
; −1

3
, −1

3
; 0, 2

3
, −1

3

´ `

0, 1

3
, 1

3
; 05

´′
L 0 1

4
2 2 · ξ2/3

`

1

3
, 1

3
, 1

3
; −1

3
, −1

3
; 0, −1

3
, 2

3

´ `

0, 1

3
, 1

3
; 05

´′
L 0 1

4
2 2 · ξ2/3

`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; −1

2
, −5

6
, 1

6

´ `

0, 1

3
, 1

3
; 05

´′
L 0 0 3 3 · η−1/3

`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; −1

2
, 1

6
, −5

6

´ `

0, 1

3
, 1

3
; 05

´′
L 0 0 3 3 · η−1/3

`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; 1

2
, 1

6
, 1

6

´ `

0, −2

3
, −2

3
; 05

´′
L 0 −1

4
2 2 · η−1/3

`

−1

6
, −1

6
, −1

6
; 1

6
, 1

6
; 1

2
, 1

6
, 1

6

´ `

0, 1

3
, 1

3
; 05

´′
L 11̄, 12, 13

1

4
, 1

2
, −1

4
2 + 2 + 2 6 · η−1/3

Table 18: Chiral matter fields in the T 0
4 , T +

4 , and T−

4 sectors.

B. Anomalies

The anomalies associated with the non-Abelian gauge groups turn out to be

Tr[(NonAbel.)2 · Y ] = Tr[(NonAbel.)2 · Q6] = 0 (B.1)

Tr[(NonAbel.)2 · Q1] = Tr[(NonAbel.)2 · Q2] = Tr[(NonAbel.)2 · Q3]

= Tr[(NonAbel.)2 · Q4] = −1

2
(B.2)

Tr[(NonAbel.)2 · QB−L] = Tr[(NonAbel.)2 · Q5] = +
1

2
, (B.3)
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H
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P
0
6
(
2
0
0
7
)
0
3
4

P + V χ (NL)j P1(f0) SM
(

1
4 , 1

4 , 1
4 ; 1

4 , 1
4 ; 5

12 , 5
12 , 1

12

)

(1
4 , 3

4 ; 06)′ L 13 1 10
(

1
4 , 1

4 , 1
4 ; 1

4 , 1
4 ; 5

12 , 5
12 , 1

12

)

(−3
4 , −1

4 ; 06)′ L 13 1 10
(−1

4 , −1
4 , −1

4 ; −1
4 , −1

4 ; −1
12 , −1

12 , −5
12

)

(1
4 , 3

4 ; 06)′ L 23 1 10
(−1

4 , −1
4 , −1

4 ; −1
4 , −1

4 ; −1
12 , −1

12 , −5
12

)

(−3
4 , −1

4 ; 06)′ L 23 1 10

P + V+ χ (NL)j P1(f+) SM
(

−7
12 , 5

12 , 5
12 ; 1

12 , 1
12 ; −5

12 , −1
12 , 3

12

)

(

3
12 , 5

12 , −4
12 ; 05

)′
L 13 1 α0

(

−1
12 , −1

12 , −1
12 ; 7

12 , −5
12 ; 1

12 , 5
12 , −3

12

)

(

3
12 , 5

12 , −4
12 ; 05

)′
L 23 1 δ

−1/6

(−1
12 , −1

12 , −1
12 ; 7

12 , 7
12 ; 1

12 , −7
12 , −3

12

) (

3
12 , 5

12 , −4
12 ; 05

)′
L 0 1 ξ

−2/3

(−1
12 , −1

12 , −1
12 ; −5

12 , −5
12 ; 1

12 , 5
12 , 9

12

) (

3
12 , 5

12 , −4
12 ; 05

)′
L 0 1 η1/3

(

5
12 , 5

12 , 5
12 ; 1

12 , 1
12 ; 7

12 , −1
12 , 3

12

) (

3
12 , 5

12 , −4
12 ; 05

)′
L 13 1 η1/3

(−1
12 , −1

12 , −1
12 ; −5

12 , −5
12 ; 1

12 , −7
12 , −3

12

) (

3
12 , 5

12 , −4
12 ; 05

)′
L 23 1 η1/3

P + V− χ (NL)j P1(f−) SM
(

1
12 , 1

12 , 1
12 ; −7

12 , 5
12 ; 3

12 , −1
12 , −1

12

)

(−9
12 , 1

12 , 4
12 ; 05

)′
L 13 1 δ1/6

(

1
12 , 1

12 , 1
12 ; −7

12 , 5
12 ; 3

12 , −1
12 , −1

12

)

(

3
12 , 1

12 , −8
12 ; 05

)′
L 23 1 δ1/6

(

1
12 , 1

12 , 1
12 ; 5

12 , 5
12 ; −9

12 , −1
12 , −1

12

) (

3
12 , 1

12 , −8
12 ; 05

)′
L 0 1 η−1/3

Table 19: Chiral matter fields satisfying Θ = 0 in the T 0
1 and T±

1 sectors.

where NonAbel. = SU(3)c, SU(2)L, and SO(10)′. U(1)3 type anomalies are

Tr[(QY )3] = Tr[(QY )2 · Q6] = 0 (B.4)

Tr[(6QY )2 · Q1] = Tr[(6QY )2 · Q2] = Tr[(6QY )2 · Q3]

= Tr[(6QY )2 · Q4] = −30 (B.5)

Tr[(6QY )2 · QB−L] = Tr[(6QY )2 · Q5] = +30, (B.6)

and

Tr[(Q6)
3] = Tr[(Q6)

2 · QY ] = 0 (B.7)

Tr[(Q6)
2 · Q1] = Tr[(Q6)

2 · Q2] = Tr[(Q6)
2 · Q3]

= Tr[(Q6)
2 · Q4] = −4 (B.8)

Tr[(Q6)
2 · QB−L] = Tr[(Q6)

2 · Q5] = +4, (B.9)

and so on.

Thus, the anomaly free U(1) charge operators are QY , Q6, and

Qa = Q1 − Q2, (B.10)

Qb = Q1 + Q2 − 2Q3, (B.11)

Qc = Q1 + Q2 + Q3 − 3Q4, (B.12)

Qd = Q1 + Q2 + Q3 + Q4 + 4Q5, (B.13)

Qe = Q1 + Q2 + Q3 + Q4 − Q5 −
1

6
X. (B.14)
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0
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(
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0
7
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0
3
4

P + 5V χ (NL)j P5(f0) SM
(−1

4 , −1
4 , −1

4 , −1
4 , −1

4 ; 7
12 , −5

12 , −1
12

)

(1
4 , 3

4 ; 06)′ R 0 1 10
∗

(−1
4 , −1

4 , −1
4 , −1

4 , −1
4 ; 7

12 , −5
12 , −1

12

)

(−3
4 , −1

4 ; 06)′ R 0 1 10
∗

(−1
4 , −1

4 , −1
4 , −1

4 , −1
4 ; −5

12 , 7
12 , −1

12

)

(1
4 , 3

4 ; 06)′ R 0 1 10
∗

(−1
4 , −1

4 , −1
4 , −1

4 , −1
4 ; −5

12 , 7
12 , −1

12

)

(−3
4 , −1

4 ; 06)′ R 0 1 10
∗

(

1
4 , 1

4 , 1
4 , 1

4 , 1
4 ; 1

12 , 1
12 , −7

12

)

(1
4 , 3

4 ; 06)′ R 11 1 10
∗

(

1
4 , 1

4 , 1
4 , 1

4 , 1
4 ; 1

12 , 1
12 , −7

12

)

(−3
4 , −1

4 ; 06)′ R 11 1 10
∗

P + 5V+ χ (NL)j P5(f+) SM
(

1
12 , 1

12 , 1
12 ; −7

12 , 5
12 ; −1

12 , 7
12 , 3

12

)

(

3
12 , 1

12 , −8
12 ; 05

)′
R 0 1 δ

−1/6 ∗

(

1
12 , 1

12 , 1
12 ; −7

12 , −7
12 ; −1

12 , −5
12 , 3

12

) (

3
12 , 1

12 , −8
12 ; 05

)′
R 0 1 ξ

−2/3 ∗
(−5

12 , −5
12 , −5

12 ; −1
12 , −1

12 ; 5
12 , 1

12 , −3
12

) (−9
12 , 1

12 , 4
12 ; 05

)′
R 0 1 η1/3 ∗

(−5
12 , −5

12 , −5
12 ; −1

12 , −1
12 ; 5

12 , 1
12 , −3

12

) (

3
12 , 1

12 , −8
12 ; 05

)′
R 11 1 η1/3 ∗

(

1
12 , 1

12 , 1
12 ; 5

12 , 5
12 ; −1

12 , −5
12 , 3

12

) (−9
12 , 1

12 , 4
12 ; 05

)′
R 11 1 η1/3 ∗

(

1
12 , 1

12 , 1
12 ; 5

12 , 5
12 ; −1

12 , −5
12 , 3

12

) (

3
12 , 1

12 , −8
12 ; 05

)′
R 21 1 η1/3 ∗

P + 5V− χ (NL)j P5(f−) SM
(

−1
12 , −1

12 , −1
12 ; 7

12 , −5
12 ; 9

12 , 1
12 , 1

12

)

(

3
12 , 5

12 , −4
12 ; 05

)′
R 0 1 δ1/6 ∗

(−1
12 , −1

12 , −1
12 ; 7

12 , 7
12 ; −3

12 , 1
12 , 1

12

) (

3
12 , 5

12 , −4
12 ; 05

)′
R 21 1 ξ2/3 ∗

(−1
12 , −1

12 , −1
12 ; −5

12 , −5
12 ; −3

12 , 1
12 , 1

12

) (−9
12 , −7

12 , −4
12 ; 05

)′
R 0 1 η−1/3 ∗

(−1
12 , −1

12 , −1
12 ; −5

12 , −5
12 ; −3

12 , 1
12 , 1

12

) (

3
12 , −7

12 , 8
12 ; 05

)′
R 11 1 η−1/3 ∗

(

5
12 , 5

12 , 5
12 ; 1

12 , 1
12 ; 3

12 , −5
12 , −5

12

) (

3
12 , 5

12 , −4
12 ; 05

)′
R 11 1 η−1/3 ∗

(−1
12 , −1

12 , −1
12 ; −5

12 , −5
12 ; −3

12 , 1
12 , 1

12

) (

3
12 , 5

12 , −4
12 ; 05

)′
R 12̄, 41 1 + 1 2 · η−1/3 ∗

Table 20: Chiral matter fields satisfying Θ = 0 in the T 0
5 and T±

5 sectors. They are all the right-

handed states. Their CT P conjugates with the left-handed chirality are provided from the T 0
7 , T +

7 ,

and T−

7 sectors.

The anomalous U(1)A is given by

QA = Q1 + Q2 + Q3 + Q4 − Q5 + 6X. (B.15)

It can be shown that the gravitational anomalies are TrQY = TrQ6 = TrQa = TrQb =

TrQc = TrQd = TrQe = 0, and TrQA = −50. It can be cancelled via the Green-Schwarz

mechanism [21].
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