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ABSTRACT: We construct a supersymmetric standard model in the context of the
Z15_; orbifold compactification of the heterotic string theory. The gauge group is
SU(3). x SU(2), x U(1)y x U(1)* x [SO(10) x U(1)3]. We obtain three chiral families,
3 x{Q,d% u, L,e’,v°}, and Higgs doublets. There are numerous neutral singlets many of
which can have VEVs so that low energy phenomenology on Yukawa couplings can be satis-

fied. In one assignment (Model E) of the electroweak hypercharge, we obtain the string scale

value of sin? 6y, = % and another exactly massless exphoton (in addition to the photon)

coupling to exotic particles only. There are color triplet and anti-triplet exotics, o and @,

SU(2)1, doublet exotics, § and §, and SU(3). x SU(2)y, singlet but Y = 2, —1, —2 L exotics,

£,m,€,7. We show that all these vector-like exotics achieve heavy masses by appropriate
VEVs of neutral singlets. One can find an effective R-parity between light (electroweak
scale) particles so that proton and the LSP can live sufficiently long. In another assignment

(Model S) of the electroweak hypercharge, there does not appear any exotic particle but
3

290 _ 3
sin HW—14.

KEYWORDS: [Compactification and String Models, Supersymmetric Standard Model)
[(Quark Masses and SM Parametersd.

© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep062007034 / jhep062007034 . pdf


mailto:jekim@phyp.snu.ac.kr
mailto:jihuni@phya.snu.ac.kr
mailto:bkyae@kias.re.kr
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch

Contents

. Introduction

=

2. SSM from Zi,_; compactification
R Massless spectra
Chirality and N =1 SUSY
2.1.0 Gauge symmetry and weak mixing angle
Chiral matter
P-3 Yukawa couplings
Phenomenologically desirable vacuum
2.2.1 The third family in the untwisted sector
Light families and mixing angles
2.2.4 Higgs doublets and p term
D2.H  Vectorlike D~1/3 and ﬁl/ 3
Bl Vectorlike exotics
B Color exotics
B3 Doublet exotics
B.d Singlet exotics

M. D and F flat directions
B3 Anomalous U(1) and D flat directions
[ F flat directions

Bl. Vacuum with effective R parity
B.J R parity violation
b.3 Effective R parity of light particles and CDM candidate

Model without exotics

=

Conclusions

B =

Massless Spectrum

Ios)

Anomalies

=

B & B




1. Introduction

There has been numerous attempts to obtain supersymmetric standard models (SSM) from
the orbifold compactification of heterotic string [l -[]. In the old standardlike models, the
attempts were just obtaining the standard model gauge group and three families [, []. In a
recent past, more ambitious attempts such as sin? Oy = % [6], one pair of Higgs doublets [f7],
and neutrino masses [§] were tried to be explained. More recently, the Yukawa coupling
structure has been looked for [J—[]]. Among these, in particular we find the GUT model
of [[1]] is satisfactory for the strong CP solution via the QCD axion although a GUT scale
axion decay constant is needed [[J], and for the approximate R-parity violation [L3].

From the proton longevity problem, the R-parity or matter parity must be exact or
feebly violated if it is an approximate one [[4]. Otherwise, the string model construction
must be treated as an academic exercise. Even with a successful R-parity, still there may
be a good deal of phenomenological problems to be overcome. Successful Yukawa coupling
structure is the next immediate concern in particle phenomenology. It is known that the
Yukawa coupling structure can be satisfied with the help of numerous singlets [[[0], [LT].
The next important concern is the vacuum stabilization problem or the problem of flat
directions. But the vacuum stabilization problem is the most difficult one to analyze. At
present, we are not yet at the stage to deal with this flat direction problem and we defer this
flat direction problem until we find a model satisfying other phenomenological constraints.
The approximate R-parity of [[J] is the result of GUT scale VEVs of 107 and 107 in
the flipped SU(5) model. This hints that it may be possible to obtain an exact R-parity
if one succeeds in obtaining an SSM without such constraint on the GUT scale VEVs.!
Since the SSM through the flipped SU(5) was obtained from a Z5_; compactification, we
look for a SSM directly in the Zis_j compactification. If found, the model is free from
the constraints of 107 and 10" in the flipped SU(5) model. But, then in a direct SSM
construction one must check the doublet-triplet splitting more carefully. A computer search
of SSMs is in principle possible but it is very difficult to put in all the phenomenological
requirements. At some stage a model by model study is necessary. For example, we
encounter a difficulty of calculating the determinant of mass matrix of singlet exotics in
models with exotics whose number is much more than 10. The determinant being zero up
to some order of Yukawa couplings does not necessarily mean that exotics do not obtain
mass since still higher orders might render a non-vanishing determinant. Fortunately, for
the Zq15_; compactification toward a direct SSM, it has been possible to find out an SSM
without the computer search.

In this paper, we present an SSM in the Zjo_; compactification which can allow an
exact R-parity for low energy (electroweak scale) fields, which will be called an effective
R-parity. In the full theory, the R-parity is not exact but the violation occurs through the
type, (heavy field) — (light fields). With this kind of effective R-parity, still the lightest
supersymmetric particle (LSP) can be a stable CDM candidate.

'If unlucky, such constraints will be replaced by GUT scale constraints on singlet VEVs, which has to
be checked carefully.



The R-parity in the SO(10) GUT is achieved by different assignments of quarks and
leptons and Higgs doublets: in the the spinor 16 for quarks and leptons and the vector 10
for Higgs doublets. This kind of spinor-vector disparity can be adopted in the untwisted
sector of heterotic string also. Let us consider only the Eg part of the heterotic string [[Lj]
for an illustration. The untwisted sector massless matter spectrum in Eg can be P? = 2
weights distinguished by the spinor or the vector properties

S:(++++++++]) V:(£l £1000000)

where 4 represents :I:%, the notation [ | means including even number of sign flips inside
the bracket, and the underline means permutations of the entries on the underline. It is
obvious that cubic Yukawa couplings constructed with & and V respect a Zo parity. But
including matter from the twisted sector, the study is more complex and we need the full
machinery of Yukawa couplings, including nonrenormalizable terms. Here, the inclusion of
neutral singlets, among which some needed singlet VEVs can take the (S) form, spoils this
idea of an exact R-parity. This needed singlet (S) is the reason that exact R-parity models
are very rare if not impossible. It is closely linked to the assignment of the electroweak
hypercharge Y. We will show two interesting Y assignments with the resulting physics
such as exotics, sin? 8y and R-parity.

For the R-parity to be exact, it must be a subgroup of an anomaly-free U(1) gauge
group, i.e. it must be a discrete gauge symmetry [[[§], otherwise large gravitational correc-
tions such as through wormhole processes may violate it. Finding an anomaly free U(1)
gauge symmetry direction whose Zs subgroup is an R-parity is necessary for this purpose.
For the U(1) gauge symmetry toward the R-parity, we use U(1)r. For the study of some
Yukawa couplings, another U(1)ps symmetry is more convenient. When we start to list
the massless states, we include these U(1) charges , I' and I, even before presenting their
definitions.

In section Q, we present an SSM from a Zio_; compactification. Sections E,E discuss
Model E. In section [, we list exotic states which form vectorlike representations. We show
how these exotics obtain masses by VEVs of neutral singlets. In section [, we discuss
that there exist D- and F-flat directions. In section [], we find a U(1) direction whose Zs
subgroup can be used as an effective R-parity in Model E. In section [, we discuss Model
S. The arguments on D- and F-flat directions and an effective R-parity of section [] are
similar to those given in section | with minor corrections on the needed singlet VEVs.
Section [q is a conclusion. In appendix [A], we list massless spectra according to the sectors.
In appendix [B, we classify U(1) groups and find out the anomalous U(1), direction.

2. SSM from Z,_; compactification

In EgxEg heterotic orbifold compactification, a model is completely determined with (1)
a twist vector ¢, which is associated with the compactified 3 dimensional complex (or 6
dimensional real) space, (2) a shift vector V' which is associated with the 16 dimensional
“gauge coordinate” and (3) Wilson line introduced in the compactified space. We employ



the Z1o_; orbifold specified with the twist vector ¢ = (% % 1—12), and take the following
shift vector V' and Wilson line ag:

5 4 1
¢= (E 2 E)
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_(222-2-2 2 2\( 2.05’
“=\383373 3'3 3 370 )
They satisfy all the conditions required for modular invariance [f, [[7] because in our model
V02—<;52 =1, a% =4,V -a3 = 1. They give V_E—gbz = 7 and V2 — ¢? = 3, where

V07+7_ =V + mgas with my = 0,41, —1.
Low energy field spectrum in a model is determined with (1) massless condition and
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(2) projection operator. The massless conditions for left and right movers on an orbifold
Zy are

P+ EVy)
left movers : (—i_if ZNLQSZ — ¢ =0,

k) (2.2)
(s k)" + ¢ —i—ZNRqﬁ,—ck—O

right movers :
where k = 0,1,2,--- ,N — 1, V; = (V 4+ mya3), and i runs over {1,2,3,1,2,3}. Here
qgj = k¢j; mod Z such that 0 < gz;j <1, and gz% = —k¢; mod Z such that 0 < gz% <1 If
k¢; is an integer, &j =18, [id). NiL and Nl-R indicate oscillating numbers for left and right
movers. It turns out that NZR = 0 generically for the massless right mover states in the
Z15_ orbifold compactification. In eqs. (R.F), P and s [= (s, 3)] are EgxE} and SO(8)
weight vectors, respectively. The values of &, ¢ are found in ref. [[].
The multiplicity for a given massless state is calculated by the generalized GSO pro-
jection operator [{, [L1],

N-1
1 <ok gy 2mil0;

_ ux’ 2.
where f (= {fo, f+, f-}) denotes twisted sectors associated with kV; = kV, k(V + a3),
E(V —ag). N (=12 in our case) is the order N in the Zy orbifold, and Ny is the order
of the Wilson line, 3 in our case. The phase © in eq. (B-3) is given by

k

Op = Y (NF = NR)oi = S(VF = 6) + (P+WV)) - Vy — G+ k) -6, (24)

i

where ¢; = ¢; sgn(¢;). Here, x(0%,6') is the degeneracy factor summarized in ref. [[LT].
Note that Px(fo) = Pr(f+) = Pr(f-) for £ =0,3,6,9.
In addition, the left moving states in the U, T3, Tg, and Ty sectors should satisfy [g]

(P+kV)-a3=0 mod Z, for k=0,3,6,09. (2.5)



2.1 Massless spectra

With the general formulae eqgs. (R.2), (R.3), and (R.§), and our choices eq. (R.1]) the massless

spectra are calculated.

2.1.1 Chirality and N' =1 SUSY

The chirality and the number of supersymmetry (SUSY) N in four dimensional spacetime
(4D) after compactification are determined by the massless right mover states. Massless
fermionic states (“R-sector”) in the untwisted sector are represented by the four component
spinor s = (sp; §) = (£; &+ £+ +) with even number of plus signs. Throughout this paper, +
(—) denotes £ (51). so determines the chirality of a state. We define a state of so = — (+)
as the left (right) handed state. The corresponding bosonic states (“NS-sector”), which
also satisfy the massless condition for the right mover, are obtained just by shifting the
left-handed [right-handed] fermionic state by 7— = (—; — + +) [Fy = (+;+ — —)].

The ten dimensional SUSY generators are decomposed into Q(19) = Q1) ® Q(6). Under
point group of the orbifold, Q) transform as Q) — exp(27is-¢)Q ). The invariant com-
ponent corresponds to the unbroken supersymmetry generator in 4D. With ¢ = (% % 1—12),
the solutions of s satisfying s - ¢ =integer are only (—; — + +) and (+;+ — —), which give
N =1 SUSY because the number of solutions counts the number of unbroken SUSY.

2.1.2 Gauge symmetry and weak mixing angle
The gauge group and gauge quantum numbers are determined by the massless left mover
states. The root vectors of EgxEg satisfying P-V = P - a3 =0 [B are only
(1,—1,0;0,0,0%)(0%), (0,0,0;1,—1;0%)(0%)", (0%)(0%;+1,41,0,0,0), (2.6)
where the underlined entries allow permutations. Thus the resulting gauge group is
SU(3). x SU(2)1, x U(1)y x U(1)* x [SO(10) x U(1)?%]. (2.7)

Identification of the electroweak hypercharge is essential for the assignment of SM
fields, the GUT value of the weak mixing angle sin® 6%, the appearance of exotics, and
R parity assignments. In this paper, we present two identifications of the electroweak
hypercharge: (i) one with exotics and sin” 6%}, = 2 and (ii) the other without exotics but
sin? 9%/ = 1—34. The electroweak hypercharge Y is defined as

111 -1 -1 !
ModelE: Y === ——:000)(000;00000], (2.8)
333 2 2
- 111 -1 -1 !
Model S : = (22 ——:000])(001;00000), (2.9)
333 2 2

where Model E has exotics and sin? 9%/ = % and Model S has only standard Qe charges
but sin? 9%/ = 1—34. Each assignment has its own merits and shortcomings. The hypercharge
Y is orthogonal to every root vector of SU(3)., SU(2)r,, and SO(10)". This operator turns
out to give the standard hypercharge assignments to the standard model (SM) chiral fields
viz. Y(Q) = %, ete.



The current algebra in the heterotic string theory fixes the normalization of Y. The
sin? 9%/ estimation is briefed for Model E. Let us consider a properly normalized Z, which

is embedded in the string theory as

Z=uxY =ux

3v2 V2

where u indicates a normalization factor of Y, and ¢3 and ¢ are orthonormal bases, g3 =
%(1,1,1;0,0; 03)(0%) and ¢» = %(0,0,0;1,1;03)(08)’. For Z to be embedded in the
heterotic string theory, u should be fixed such that UQ(% +1)=1loru? = % B, £§. This
hypercharge normalization leads to a gauge coupling normalization g2 = gg%, where g1

(2.10)

2 @ (Tz]

is unified at the string scale with the non-Abelian gauge couplings such as SU(2);, gauge
coupling gs. Thus, in Model E the weak mixing angle at the string scale is

1 3
:22 n0
sin“lyy = ————5— = —. (2.11)
Y1+ (/) 8
The same kind of calculation gives sin? 6%, = % in Model S.
Since Y in Model S is obtained by adding a U(1)¢ generator belonging to Ef, in the
bulk of the paper (except section f]) we present quantum numbers of Model E and an

effective R-parity. Then, in section [j we present Model S.

2.1.3 Chiral matter

The matter spectra appear from the untwisted and twisted sectors. All matter fields in this
model are tabulated in tables [4-R0 in appendix [A]. Depending on the values of P -V, the
origins of the fields are denoted by Uy, Us, U for the untwisted sector fields. We name the
twisted sector associated with kVy = (V + myas3) “T,:n 77 with superscripts 0, +, — (except
for T3,T%,Ty). For modular invariance, all these sectors should be considered.

In a Zy orbifold compactification, the anti-particle states (C7 P conjugations) of par-
ticle states in a T,;n 7 sector are, in general, found from the T;ﬁ i sector. In the Zio g
case, the untwisted sector U and T3, Tg, Ty sectors provide both left and right chirality
states. In particular, the U and Ty sectors contain particle states and their corresponding
anti-particles states. On the other hand, Ty, Ty, Ty, T (T11, Tho, T3, T5) sectors allow only
left (right) chirality states.

As seen in the tables [[4-20, this model allows three families of SSM matter fields from
the Uy 3 and TY sectors. The other fields including the electroweak Higgs are vectorlike
under the SM gauge symmetry:

3x{Q, d° u° L, €, v} + vectorlike fields (including MSSM Higgs). (2.12)

The key representations of this SSM are

—(3,2)1, d°= (3%, 1)1, u® = (3,1) 2,
matter : Q= )6 ( )3 ( )3 (2.13)
L=(1,2)-1, e=(1,1)1, v°“=(1,1),
2
H,=(1,2)1, Hj=(1,2)-1, electroweak scale
Higgs: { " ( . Jp Ha=(1,2)3 (2.14)
1p, string scale.



In this model, there are vectorlike D and D (color triplet and antitriplet fields) which carry
the familiar d-type quark charge Qem= :F%, respectively.

We observe also that there are states with exotic electromagnetic charges (exotics)
from the Tki (k =1,2,4,7) sectors. All color exotics are SU(3), triplets and antitriplets
and carry Qem= 0, i%. The SU(2) doublet exotics or simply doublet exotics carry Y =
i% whose components carry again Qem= i%, i%. The SU(3). x SU(2)1, singlet exotics
carry Qem= i%, i%. All these exotics form vectorlike representations under the SM gauge
symmetry.?2 The mass scales of these vectorlike representations are near the string scale
if the needed neutral singlets develop string scale VEVs. We will comment more on this
later.

In table [ll, we list particles carrying familiar Qen, charges. In addition, we list neutral
singlets in table Pl Some of these neutral singlets are required to have string scale VEVs
in order to break extra U(1)s and give masses to the exotics.

In the T3 and Ty sectors as shown in table [l of appendix, there are three 10’s of
SO(10)". In this model, the hidden sector confining group is SO(10)’. We assume that
some of three 10's of SO(10)" obtain VEVs and break SO(10)" to a smaller nonabelian
group so that its confining scale is at the intermediate scale. The gaugino condensation at
this intermediate scale would break the AV =1 SUSY.

2.2 Yukawa couplings

To study Yukawa couplings in orbifold compactification, we need to know the H-momentum
of a state in a sector. Neglecting the oscillator numbers, the H-momenta of states, Hmom,0
= (§+ ko +7_)] are

U, : <—1,0,0>, U, : <0,1,0>, Us - <0,0,1>,
. -7 4 1 . -1 4 1
Tl . <ﬁaﬁaﬁ>a T2 . <Ta€a€

. -1 1 1
T4'<T’§’§

. -1 4 7 . -1 3
T7 . <ﬁaﬁaﬁ>a T9 . <TaO’Z>’

from which T5 will not be used since the chiral fields there are right-handed while the other
fields are represented as left-handed. With oscillators, the H-momentum [= (R;, Ra, R3)]
are
(Hmom); = (Hmom,0); — (N"); + (NF); . j=1,2,3. (2.16)
The superpotential terms are obtained by examining vertex operators satisfying the
orbifold conditions [[j]. It can be summarized as the following selection rules:

2Since all the SSM matter fields arise from the U and T} sectors, while all the exotics are only from the
twist sectors associated with Wilson line 75 (k = 1,2,4,7), 3 families of SSM matter fields are relatively
easily obtained even with other choices of Wilson line. Indeed, a large class of models with i as the first
five entries in the shift vector V and with a proper Wilson line can give sin?6y = % and 3 families of the
SSM matter fields. However, it is non-trivial to construct a model such that all exotics form vectorlike

representations under the SM gauge symmetry.



Visible states SM notation r I’

(++ = +=+++H)(0%) Q(Uy) -1 | +1
(+=—=;——;+++)(0%) d*(Us) -1 | +1
(+ - - ++ +——)(0%) u®(Us) -1 | -3
(— = —4+—=;+——)(0%) L(Uy) -1 | -3
(+++;———+—)(0%) e“(Us) +5 | +5
(+++; ++ + ++)(0%) v°(Us) -1 | 41
(000;=10;—100)(0%) H,(Us) +2 | +2
(000;1.0;001)(0%) Hy(Us) -4 | =2
(£t =it=i5 5 5)(0% 2-Q(17) | +1 | +1
(+—=;——% & 508 2.d¢(TY9) +1 | +1
(+——=++i3 5 50 2.u(T9) | =3 | -3
(———=t=ig 5 )0 2. L(T}) =3 | =3
(+++——% 2 )08 2 e°(TY) +5 | +5
(+++++ 5 2 )08 2-05T9) | 41 | +1
(1,0,0;0 0; 5+ = 3)(08) 3-Dy3(TY)
(=1,0,0;0 055 5 3)(0%) | 2- Dy 5(TY)
0,0,0; =1 0; =t = 1)(0®Y 2. H,(TY) +2 | 42
(0,0,0;1.0; 5+ 5 $)(08) 3- Hy(TY) 2 | =2
(17070;0 0703)(_71 % 0; 05)I 3 'El/?;(TG)
—1,0,0;0 0;0%)(3 =L 0;0%) 3-D_y5(Tg) | |=2]||-2
(0,0,0; —1 0; 03)(2—712% 0; 0%)/ 2. Hu/(TG)
(0,0,0;1 0;0%)(3 5+ 0;0°)’ 2 - Hy(Ts) | -2 | 2
R TNG00) | D) | 1
G TR HEE 00) [ 2. Dpm) | 1
(31421 1113 0,0%) | 20 H(Ty) | +4 | +3
FF AT HDEF 00 | Haly) | 4| 3

Table 1: Standard charge left-handed (L ) chiral ﬁelds. The multiplicity is shown as the coefficients
of representations. + and — represent +3 and —3, respectively. The U(1) charges I' and I" will
be presented in egs. (2.23) and (2.24). Neutral singlets are listed in the following table. D /3 and
D_y3in T and Ts have unconventional I's, not mixing with d and d¢ with an exact parity.

(a) Gauge invariance.
(b) H-momentum conservation with ¢ = (15—2, A i)

12012/

> Ri(z)=—1mod 12, > Rp(z)=1mod3, > Rs(z)=1mod]12, (2.17)

where z(= A, B, C,...) denotes the index of states participating in a vertex operator.



(c¢) Space group selection rules:

> " k(2) = 0 mod 12, (2.18)

Z [kmy] (2) = 0 mod 3. (2.19)

z

If some singlets obtain string scale VEVs, however, the condition (b) can be merged
into eq. (R.1§) in (c). Our strategy to see this is to construct composite singlets (CS) which
have H-momenta, (1,0,0), (—1,0,0), (0,1,0), (0,—1,0), (0,0,1), (0,0,—1), using only singlets
developing VEVs of order Mg ing. Then, with any integer set (I,m,n), we can attach an
appropriate number of CSs to make the total H-momentum be (—1,1,1). Indeed, it is
possible to construct such CSs, with the singlets defined in table B

[SIS( ’Sw] 1S4 ’S§ 191188 515] + (1,0,0),
1515 850] (5 57 1911818 S10] + (—1,0,0),
[slsmsm][s@ S 5151181588 81015V 8 515 (0, 1, ) (2.20)
[S1S 1S10][SY 8 819] + (0, 1,0,
(5158 S1012[557 88 S1a] = (0,0, 1),
(0

1515 510) (S8 s 510]2 ¢ (0,0, 1),

where the CS H-momenta are shown. Sil), 54(13) denote Sy states with (N L)j = 21,23,
respectively. Similarly, S%g, S% are S7g with (NL); = 17,13. For oscillating numbers
(N L)j of massless states, refer to the tables in appendix A. CS in eq. (R.2() are neutral
under all the gauge symmetries in this model, and fulfill the space group selection rules of
egs. (B.18) and (R.19). Hence, multiplication of the above CS to an operator change only

the H-momentum vector by integers. Their VEVs are assumed to be of the string scale on

a vacuum.
Then, on the vacuum with VEVs for 57, S £17’38)’ S10, and Sio, the H-momentum con-
servation eq. (B-17) can reduce to

ZR z) = integer, j=1, 2, 3, (2.21)

with the understanding that arbitrary number of CS with O(Muing) VEVs can be at-
tached. Thus, if an operator’s H-momentum is an integer vector, proper CS can be multi-
plied such that the resultant H-momentum becomes (—1,1,1) mod (12,3,12). Note that
operators multiplied by (higher power of) the above CS are not suppressed, because the
VEVs in eq. (R.2() is assumed to be of order Mggying. Moreover, (N L) s contributions
to H-momentum also can be always compensated by proper CS, because they just add
integers to Hmom 0 as seen in eq. (2.16).

H-momentum in T}, sector is generally given by (Hmom,0 it T%) = (Hmom,0 in 11) X
k + (an integer vector). Accordingly the condition eq. (R.1§) is equivalent to eq. (R.21).
From now on, we will require only (a) and (c¢) for Yukawa couplings with the understanding
proper CS are multiplied.
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To have a definition of parity, Si5, Si6, Sis, S20, and Sz should not develop
~10 -

e U(1) gauge symmetries that are not observed at low energies are broken, and

e unwanted exotics achieve heavy enough masses,

The phenomenologically desirable SSM vacuum is chosen by assigning nonzero VEVs to

Table 2: Left-handed electromagnetically neutral SO(10)" singlets. There is only one untwisted
some SM singlet fields such that

2.2.1 Phenomenologically desirable vacuum

sector singlet Sp.

VEVs.



e R-parity violating couplings inducing too rapid proton decay are sufficiently sup-
pressed.

All the neutral singlets appearing in this model are listed in table f.
To attain the aims mentioned above, let us choose a vacuum, as one possibility, on
which the following neutral singlets get vanishing or non-vanishing VEVs:

(So) #0, (S1) #0, -+, (S13) #0, (S15) # 0, (S23) #0, (S29) # 0 (2.22)
(S14) = (S16) = (S17) = -+ = (S22) = (S24) = (S25) = --- = (S25) = 0.

In section f], we will show that the non-vanishing VEVs in egs. (2:22) are enough to give
heavy masses to all the exotics present in this model.

The VEVs of the singlets in eq. (2.29) break U(1) symmetries in eq. (R.7) except U(1)y
and U(1)g, since all the neutral singlets don’t carry the charges of U(1)y and U(1)s. The
U(1)¢ generator is defined as Qg = (0%)(0,0,2;0°)". In fact, all Q¢ nonzero charges are
carried only by the exotics as shown in tables [[4-20. All the observable matter fields are
neutral under U(1)g. Thus, in addition to photon there exists another strictly massless
U(1)s gauge boson which is named as ezotic photon (exphoton for abbreviation). Since it
couples only to superheavy exotic matter, the presence of the “exphoton” is phenomeno-
logically acceptable.

In tables ] and [, we displayed the U(1)r and U(1)r quantum numbers. The U(1)p
and U(1)p are linear combinations of U(1)s observed in this model. Their generators are

defined as
I = X—(Q2+Q3)+E(Q4+Q5)+6(B—L), (2.23)
I = X+ 1(Qu+Qs) + 6(B~ L), (2.24)
where

Q2 = (0%:0,2,0)(05), Qs = (0%0,0,2)(0%
Qs = (0%)(2,0,0;0°), Qs = (0%)(0,2,0;0%)

X - (_2’_2’_2’_2,_2;03)(08)I
2 2 2
B-L=/(=220 )% 2.25
(3:330) ) (2.25)

Q4 and Qs depend only on the hidden E§. The U(1)r symmetry will be used in section [
for a discussion on R-parity. We put boxes for I'') = +1 singlet fields. A desirable vacuum
toward an exact R-parity might be the one with vanishing VEVs for all these boxed singlets.
If the R-parity is not exact, it should be an approximate symmetry valid at low energy
processes. These conditions should, of course, be consistent with other phenomenological
requirements such as large (small) enough exotic mass terms (p term). In table [, we also
boxed some D and D fields which have different type U(1)r quantum numbers from those
of d and d° quarks. Namely, if the parity defined from U(1)r is exact, these D and D do
not mix with light quarks d and d°.
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Note that the neutral singlets developing VEVs in eq. (R.29) carry only zero or negative
IV charges: I = 0 or —1. In fact, (Sag) break the parity, however, in section f] we will also
show that the light fields can still have a useful approximate R-parity.

2.2.2 The third family in the untwisted sector

Sixteen chiral fields in eq. (R.1J) form a family. One family appears in the untwisted sectors,
U and Us. SU(2)r, doublets are in U; and SU(2)y, singlets are in Us. The remaining two
families arise from 7Y. Since the third family quarks are unique in being heavy, we assign
the third family to the untwisted sector fields. Indeed, there can exist cubic couplings for
the untwisted sector family by the coupling U;UsU; allowed by the original selection rules
(a), (b), and (c). For this to be a viable interpretation, H, and Hy in Us must survive
down to the electroweak scale.

2.2.3 Light families and mixing angles

With the VEVs of eq. (B:29), the (reduced) selection rules allow also the mass terms of
the first two families of the SSM chiral matter. For example, Q and d° in the T} sector
can couple together with S7 or 5155, if the oscillating number carried by S7 or 5155 is
compensated by a proper CS. The cross terms, Q(U;)-d*(TY) and Q(T)-d*(Us) are also
possible through S2-CS (or [S;S5]2-CS). Thus the d° — d mass matrix, M@ takes the form

Q(TY) Q(T}) Q(Uh)
de(TY) a b (@
eI | b a3 | (He(Uy)),
de(Us) \ =@ 2@ z

N

where z = S2 (or [S155)?) and (9 = S2 (or [S1.55)%). Here we set (CS) = 1. The down-type
quark mass matrix is symmetric. For flavor democratic T) couplings, we have a common
entry a instead of a, b in the 2 x 2 sub-matrix. But a flavor democratic form is one specific
representation of the Sy permutation symmetry. For a general S representation for T))
sector fields, the upper left 2 x 2 sub-matrix is of the form given above. So, in general its
determinant is nonzero. To have nonzero mixing angles, the up-type quark mass matrix,
M® _ should not align to the down-type quark mass matrix, M (Y. The up-type u¢ — u
quark mass matrix is

Q(TY) Q(TY) Q(Un)
ut(T7) a g 2
uc(Tf) 4 a 2@ (H,(Us)),
u Ug
where
{d' 0/} = {So, S351}, =™ ={S;8y, $15559, 575354}, y™ = {SsS0, S2549, SsS5354}.

a’ and b’ which are linear combinations of Sg and 5354 can be different in principle. In
M®) | proper CS multiplications are assumed. Unlike M@ M® is not symmetric.
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Similarly, the charged lepton mass matrix M(©) is

L(T{) L(T) L(Uy)

eC (Tz?) a’ by’ pac)
e“(TY) b a” z(®) (Hy(Us)),
e’ (Us) y©  yle) 1

where
{a", b} = {S7, S155}, x(©) ={S7Ss, S155Ss, 575254}, y'® = {5750, 5159559, S75354}.

Neutrinos obtain mass. With the following Dirac and Majorana mass terms, the seesaw
type light neutrino masses are possible:

L(T{) L(TY) L(Uy)

VC(TB) c c x®)
Dirac : v°(TY) c c z) (Hu(U2)),
ve(Us) \ y®  y®) 1

W~

ve(Ty
Majorana : v¢(T}) M Moy My
vé(Us

where
c={Sy, S3S4} 2™ ={SsSy, $254S9, SsS3S1}, y") = {575y, 515550, S75354},
and
Mo = [S23S29]*[S7]*, My = [S23S29]*[S7)*, Ma = [S23Sa9]*[S7]*.
Therefore, the vacuum (R.23) can give successful quark and lepton mass matrices.

2.2.4 Higgs doublets and i term

Vectorlike electroweak doublet fields, H, (Y = %) and Hy(Y = —%), appear in Us, T, Tg,
T3, and Ty. The selection rules (b) and (c) in section (R.d) allow interactions of UyUsxCS
and UsUsTsTsxCS. Among these interactions, [H,(Us)Hg(Us)] x (Sp - CS + S10S513 - CS)
are present. We regard {H,(Us), Hy(U2)} as the MSSM Higgs fields. TeV scale VEV of
(So - CS + S10513 - CS) gives the MSSM “u” term. We will discuss it again later.

The selection rules permit T5T5xCS couplings. So, H,(Ts)H4(Ts)xCS couplings are
present. Hence two pairs of H, and Hy from Tg obtain heavy mass by string scale VEV of
CS. The selection rules admit also TQT{T) couplings. So there exist H,(TY)Hq(TY)Se(TY)
couplings, from which two pairs of H, and Hy in T} also become heavy by string scale
VEVs of Sg.> There remains one Hy(TY) at this level.

3We ignore a possible permutation symmetry at this level of study.
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Pairs Masses (xproper CS)
{Hu(U2), Ha(Uz)} S0, 510513
{Hu(Uz), Ha(Ts)} S10
{H.(U2), Hy(TY)} 51054
{H.(Uz), Ha(T3)} 0
{Hu(Ts), Ha(U2)} Si3
{Hu(Ts), Ha(Ts)} 1
{H.(Ts), Ha(TY)} Sy
{Hu(Ts), Ha(T3)} 0
{H.(T)), Ha(U2)} 51355
{H.(T}), Ha(Ts)} S5
{H.(TY), Ha(TY)} Se
{H.(TY), Ha(T3)} 0
{Hu(Ty), Ha(Us)} 513529
{Hu(T), Ha(Ts)} Sa9
{H.(Ty), Ha(TY)} 54529
{Hu(Ty), Ha(T5)} 1

Table 3: Mass terms for H, and Hy. CS are products of singlet fields given in eq. (2.19). Proper
CS are assumed to be multiplied such that the H-momentum becomes (—1,1,1) mod (12, 3,12).
We set (CS) = 1. For pu solution we assume that a modulus is involved in Sy or S19513.

T3Tyx CS couplings are also allowed. Thus, there exist couplings of H,(Ty)Hy(T5)xCS,
and by a VEV of CS one pair of {H,,(Ty), Hq(T3)} is made heavy. Thus, there remains one
H,(Ty) also at this level.

The remaining Hy in 7)) and H, in Ty can also be made heavy via the coupling
[Hy(To)Hy(TY)] x (S4S29). This coupling is one of TyT)TYTy interactions, which satisfies
the selection rules. To study the masses in more detail, we list the full H,H; couplings in

table E

Now we can represent a schematic form of the 7 x 7 H, H; mass matrix as

Hy He He Hy Hy Hy Hy

HY [A x x + ¥ « 0
HS | + x x > > > 0
HS | + x x > > > 0
HY| ¥ < < Vv vV VvV 0 (2.26)
H*'| ¥ << Vv v Vv 0
HY |+ O O O O O x
HY \ " O O O ¢ ¢ x

Here H°, HS H* and H? indicate H,(Us), H,(Ts), H.(Ty), and H,(Ty), respectively.
Similarly, Hy = Hy(Us), Hy = Hy(TY), and Hs = Hy(T3). /A denotes non-vanishing VEVs
by Sp and S19S513, A = Sg+ S10513. As mentioned earlier, we tacitly assume proper VEVs
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of CS, which are of string scale, are multiplied to fulfill the selection rule (b) discussed in
section P.9. xs stand for non-vanishing VEVs by CS. x and «' are VEVs of Sjp and S10954,
and *, ', " are those of Si3, S1355, S13529. >, <, and V correspond to VEVs of Sy,
S5, and Sg, respectively. ¢ and (' are VEVs of Sog and S4S29. Since any neutral singlets
with non-vanishing VEVs do not carry positive IV charges, zero entries in the above matrix
eq. (R.24), which are associated with Hg4(T3), should be exactly zeros.

We suppose relatively small VEVs for S19 and Si3 compared to the other VEVs of
neutral singlets:

S10, S13 5 O(Mstring)- (227)

Then the mixing angle between { H, (Us), Hq(Us)} and the other H,-H, pairs is suppressed,
and the effective “u” coefficient of H, (Usz)Hg(Us) is estimated as

p~ So+ O(SIOSIB/Mstring)- (228)

If one VEV among Sy, Sig, and Si3 is left undetermined at the string scale, p is also
undetermined in the SUSY limit. With soft SUSY breaking terms, however, p (and Higgs
VEVs) could be fixed around TeV scale. In the limit 4 — 0, an accidental Peccei-Quinn
symmetry revives. We do not discuss it in this paper.

2.2.5 Vectorlike D~1/3 and ﬁl/g

The Qem= :F% colored fields D~1/3 and ﬁl/ 3 appear only in twisted sectors Tg, T} T3, and
Ty. Three pairs of {D(Ts) and D(Tg)} can be removed from low energy field spectra via
D(Tﬁ)ﬁ(Tﬁ) x CS.

The coupling D(T)D(TY)Se(TY) remove two pairs of D and D in T, leaving one D
in 7). The coupling of the form D(Ty)D(T3)xCS is present, and so one pair of D and D
is removed at this level, leaving one D in Ty.

The remaining D(TY) and D(Ty) can be heavy via the two couplings [D(Ty)D(T6)] x
(84823 - CS) and [D(T6)D(TY)] x (S5 - CS). Note that here D(Tg) and D(Ts) are already
coupled to each other to have the mass term with a VEV of CS. Therefore it is obvious
that all {D, D} obtain masses. We list all D-D couplings in table [4.

The 8 x 8 D-D mass matrix is of the form

D¢ Dg Ds Dy Dy Dy D

Dg X X < < <0
Dy X X X < < < 0
Dy X X X < < <0
Dy| > >> Vv v VK |, (2.29)
Dy > > >V V VK
Dy O 00Q0DoDon x
Dy O 00Q0DoDon x

where Dg, Dy, etc. mean D(Tg), D(T}), etc. x, <, >, and V entries stand again for VEVs
of CS, S5, Sy, and Sg, respectively. [, [', and X denote VEVs of 59354, S2356, and S7.55.
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Pairs Masses (xproper CS)
{D(Ts), D(Ts)} 1
{D(Ts), D(T4)} Ss
{D(T5), D(T3)} 0
{D(T4), D(T)} Sy
{D(Ty), D(T4)} Se
{D(Ty), D(Ty)} [55]
{D(Ty), D(Ts)} [ S23 ]S4
{D(Ty), D(T1)} SG
{D(Ty), D(T3)} 1

Table 4: Mass terms for D and D. CS are products of singlet fields given in eq. (2.19). Proper CS
are assumed to be multiplied such that the H-momentum becomes (—1,1,1) mod (12, 3,12). We
set (CS) = 1.

Through the mass terms in eq. (R.29), all Ds and Ds are paired to be superheavy. Mixing
terms between d°s in Us, T and Ds in Tg, T, Ty can not arise in any manner. It is because
the negative I charges carried by such mixing terms cannot be compensated by neutral
singlets with non-zero VEVs.

This shows that the odd I and Qem= —% quarks of table [l can mix among themselves,
but not with D(Tg), D(TY), D(Ts) and D(TY), in the limit So3 — 0. So, the down-type
quarks have additional contribution to the mass matrix by mixing with D(Ty) and D(T3),
and non-vanishing quark mixing is achieved in general.

Even if S15 = 0 (so ¥ = 0), all D and D still obtain masses because the determinant
of eq. (.29) is nonzero. If So3 = 0 (so O = [0’ = 0), however, the above type mass mixing
does not give a mass to one pair of D-D. Hence it seems necessary to have at least one T’
odd singlet obtain a VEV. Let us choose the VEV (Sa3) as the parameter contributing to
P violating terms among the low energy fields.

3. Vectorlike exotics

Among the phenomenological conditions, the exotics mass condition must be satisfied at
any cost. In this model, exotic fields appears in the T li, T. 217 T f, and 7. 7i (or T, ;E) sectors.
The color triplet exotics carry the electromagnetic charges of 0, :I:%. The doublet and singlet
exotics carry also fractional electromagnetic charges: Qem= :I:%, :F%. Color exotics could
form color singlet states with fractional electromagnetic charges. Searches for fractionally
charged particles have not given any positive evidence, and hence all exotics on the vacuum
we choose should be heavy enough. Let us proceed to discuss how the vectorlike exotic
states achieve masses.

3.1 Color exotics

In table (), we list the color exotics found in our model. They are singlets under SU(2)r,.
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Color exotics SU(3)c(Sector) | (a or @)@em

Fhsb e os) Bhw0) | 0 of
B bbb 2 F) G250 | s %

(FBabFFFFF) FEE0 | 5@ of

(Fhds b 2) 0530 | s 2l
(B3 Fb b3 01) 0550 3(17) 30
B dbsbPo) 0t | @) | 2w
(Frbd 0 ) 0550 | san | 2o

Table 5: Color exotics of Qo= 0, :I:%. Color 3 and 3* with Q= :l:% are exotics.

Pairs Masses (xproper CS)
1 x {a§(Ty), a3(T5)} S4S12
2% {044(TI) Eg(T4_)} Sy, 5354
1 x {a{(T7"), a8(T, )} 59513529
2 x {oy*(1y), @ (1)} Ss, S

Table 6: Mass terms for color exotics. CS are products of singlet fields given in eq. (2.19). Proper
CS are assumed to be multiplied such that the H-momentum becomes (—1,1,1) mod (12, 3,12).
We set (CS) =

As seen in the table, the color exotics are vectorlike under the SM gauge symmetry. They
all can achieve masses when the neutral singlets in eq. (R.29) get VEVs. To prove this, we
don’t have to study the full mass matrix for the vectorlike exotics. Instead, we will suggest
just some couplings enough to show that they are heavy. In table [f|, we present the minimal
number of couplings yielding their masses. Since all the vectorlike exotics in table f] can
pair up with neutral singlets, they can be removed from low energy field spectra.

3.2 Doublet exotics

In this model there are SU(2);, doublet fields carrying exotic electromagnetic charges.
They are SU(3). singlets but possess the charges of Y = :I:% (or Qem = :I:%, F %) In
table [, all doublet exotics are collected. All the vectorlike doublet exotics in table [f could
achieve masses via couplings with neutral singlets developing VEVs. The minimal number
of couplings for them to be heavy are displayed in table §. Hence, all the doublet exotics
can obtain masses.

3.3 Singlet exotics

There are 38 kinds (in terms of gauge quantum numbers) of singlet exotics, as collected
in tables fl.  In these tables, &, & are Qem= :I:% singlets and 7,7 are Qem= :F% singlets.
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Doublet exotics [SU(2)1]¥ (Sector) | Label
(BB Bhotes) (Gaor) | 275 o1
(bt B hh ) (@m0 2/5(17) 62
(bbb B b o 0) (&b 50 2/5(17) 53
(bbb b 00y | sea |5
(53 T2 B0 0t 3hey) | 22T | 5
(b h ) obbey | 2o | s
(hhddFo ) 0450 | 22ea | s
(BB Fedess) EH0) | 2@ 3
(bb a3 5w 0 5) (33 50 2/5(T7) 2
Table 7: SU(2) doublet exotics with Qem= +2, F1.
Pairs Masses (xproper CS)
1x {84(T)"), 62(T7)} 523
2% {05(T"), o7(Ty )} Ss, S2S4
1 x {01(T7), 0o(T7 )} So, 5354
1x {0s(T5"), 65(T7)} Sg, 5254
2 x {04(T}), 06(Ty )} So, 5354

Table 8: Mass terms for doublet exotics. CS are products of singlet fields given in eq. (2.19).
Proper CS are assumed to be multiplied such that the H-momentum becomes (—1,1,1) mod
(12,3,12). We set (CS) = 1.

Singlet exotics of table [ are vectorlike.

We find that fields with non-vanishing U(1)s quantum numbers are only exotics. This
means that U(1)g cannot be broken by VEVs of neutral singlets since neutral singlets
cannot be exotics. As mentioned before, however, the exactly massless U(1)g gauge boson
(“exphoton”) is still phenomenologically acceptable, since all observable matter fields are
neutral under U(1)g.

In table [[0, we present some mass terms of singlet exotics. In this mass table, we
tried to combine vectorlike pairs, not listing all off-diagonal terms as before. It would be
unwieldy to list all the off-diagonal terms for several tens of singlets. We note that in the
above vacuum (R.29), all exotic singlets obtain masses, as can be seen from the pairings
listed in table [[J. But here it seems that I' odd fields Si5 and Sa3 are involved.
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States SM notation Label

—— B E— 7
Gimn s om0 | el 8
(§7§7§71%7%,;T,gl,())l(gyl%;lg;? )5 ) 15/5(75") &2
(%71_71%71671611%17%171__) (?;Tig;so/) 1_1/3(T2+) .
o UL GO B U
(5.5 Fimee 50 (505 550) Ll ) "
o sipge s o) w el )2 )|
3P s E T | @) | &
pevs iz 3 Bes0) | sl iy
Goo 53 8 3) G p70) | hel)
Gabs D080 | ) | w
(616@?%17%;57?71% (%’ﬁ’ ERNLY 2 Luys(Ty) M9: 10
(5.5 51555 5.0 05,5509 | 2-155(T) &
(—1 =t =1.11.1°2 0) (0 717%1,05) 2- 1_2/3(T ) &s

3 37 3 7373’3737
1 ) 3~11/3(T4) M1
( ; 21y 5(T; Mo
(év%vay%:%’%v%:%) (0,3,5:0°) 2 1uy(T) T
(3,41 =1 =1 Ly = 6 ) | Mias s e
1) 2 19)3(Ty) &
) 2 )

Wl
W=l

(111.—_1—_10

&7

» 39 3 ) ) ’ 3 .
;3 iS;S 11.-1 =5 _§ (() 1 1-05)/ 3.1 (Ty)
676’67676’2’676 7373a5/ —1/3\44 nr
-1 —1 -1 1 -5 101, -
e s o) 03,30 )/ 3-1_1y5(Ty) s
-1 -1 -1.1 1.1 1 1 —2°-2.5 —
% 58813180 8) (07777150) 2-1.45(Ty) Mo
-1 -1 -1.11.111y/y 11 6-1 T
6° 6 ° 6 7676’2’676) » 393 ) ’ 71/3( 4) 120, 721, 7)22
(;1 -1 -it. 7 7.1 -7 ;3) (i 5 ;4~05)/ 1 (T+) E
20T T2 212 T2 T2 T2) Vi 1 T2 - ) -2/3\41 8
-1 -1 —-1.-5 =5.1 5 9\)(3 5 —4. + 7
12712712712712’12712712)(12712712’0) 1/5(T7) N23
5 5 5.1 1.7 -1 3)(3 5 —4.05 + -
(12712712712712712712712)(1271271270) , 11/3(T1) 24
=L =1 —=1.-5 =5.1 =7 =3)(3 5 —4.05 + 7.
(12712712712712’12712712 (1271271272l) 1y /5(T7 Na5
1 1 1.5 5.-9 -1 —1\(3 1 -8, -
(12712712’12712712712712)(12712712’0)/ 1o1/5(T7) 726
-1 1 Z1.7 7.1 5 -8)(-3 -1 8. 05 + z
(12712712712712712712712)(12712712105), 1_5/53(T7") &o
5 5 5.1 1.-5 —1 3)(9 -1 -4, + -
(12712712’12712712712712)(12712712’0)l 1y/5(T7) Na7
5 5 5.1 1.5 -1 3)(=3 -1 8.5 + 5
(12712712112712712712712)(12712712102 , 1./5(T7) UbH]
-1 -1 —-1.=5 =5.1 5 =3)(9 =1 —4. + =
(12712712712712’12712712 (1271271270)/ 1i/5(T7") N29
-1 -1 —-1.-5 =5.1 5 =3)(=3 -1 8.5 + 7
(12712712712712112712712)(1 71271270)/ 1./5(T7) N30
11, -7 -7 - -3 5 4.5 —
(5239 T3 T 2 (37375’8) 1o3(17) &10
5 21 1\ (9 7 4 -
12712712712712712712712)(1271271270)/ 1—1/3(T7) 131
171 1.5 5.3 —i —iy[(=3 7 =8.p5 —
(5 13+ 395 3> 725 150 T2 12)(Evﬁ7ﬁuog/ 1_1/5(T7) n32
-5 -5 —5,-1 -1, -3 23 25 4. —
(B oo oo e e (B 12712702 11/5(T7) 133
1 1 1.5 5.3 —1 -1\ (=3 =5 4.05 -
(13, 190190 130 125 190 720 12) (70 120 1330°) | 20 1o0y5(T7) 734, 735

Table 9: Singlet exotics.

4. D and F flat directions

4.1 Anomalous U(1) and D flat directions

There are eight U(1) symmetries in this model. If there is an anomalous U(1), some of the
gauge symmetries are broken via the Fayet-Iliopoulos D-term. Indeed, our model has an

anomalous U(1)s whose charge is given in terms of the original eight U(1) charges as

Qa=24Y —30(B— L)+ Q1+ Q2+ Q3+ Q4 — Q5. (4.1)
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Pairs Masses (xproper CS)
Lx {&(Ty), &(T7)} S7S0| Sa3 |
1x {&(Ty), &(T5)} 51510
1x {&10(Ty), &(T7H)} Sy, 5254
2 x {&(Ty), &4(T)} Sg, S35
2 x {&(Ty), &(T,0)} S7, 5155
Lx {m(Ty"), 76(T5 )} S4510
1x {m(T5), 77(T5 )} 515459
1x {n3(Ty"), 7s(T5 )} S5S511
{na,5(T5"), Mo 10(T5 )} S5511
2 x {m7(Ty ), Ta(Ty)} Sg, 5254
Lx {mz(Ty ), Tor(T5)} 56529
3x {ms(Ty), T (Ty)} (54512)*
2 x {mo(Ty ), Ts(Ty)} S7, 5155
{n20,21,22(Ty ), Ta516(T3)} S7, 5155
1x {26 (T7), Tso(T7)} So, 5353
L {ns1(T7 ), Tao(T7)} 187519 S15 ] Sao
1x {ns2 (T ), Tas(T7)} 513 S29
1 {n33(T7 ), Taa(T1)} 57, 8155
1 {n3a(T7), Tas(Ti)} 57, 8155
1 {n3s(T7 ), Tas (1)} Sg, 9254

Table 10: Mass terms for singlet exotics. CS are products of singlet fields given in eq. (2.19).
Proper CS are assumed to be multiplied such that the H-momentum becomes (—1,1,1) mod

(12,3,12). We set (CS) = 1.

The Fayet-Iliopoulos D-term is

= 19272

DA— 29 1o, + >~ Qa8 ()0 (0).

As shown in appendix [B, TrQ 4 is negative, —50. For supersymmetry, the chosen vacuum
must satisfy (D) = 0. Thus the summation >, Qa(i)¢*(i)¢(i) for the nonzero VEVs
given in (2:23) should be positive. The VEVs in D* term potential can break a U(1) at
the SUSY minimum. To see how the remaining six U(1)s behave, in table [L] we list the
U(1) charges of those singlets with non-vanishing VEVs. The D-flatness conditions for the

remaining anomaly free U(1), are

(DY) = <ZQg(i)¢*(i)¢(i)> =0, g=Y, a, b -, ¢ 6.

One could find the solution to D4 = DWW = (9=Y, a, b, ---

1S0? = |S4|? — 2|S5|* — |S|* — 7|S7|* + 3|Ss|* + 3| Sy

—[S10[* + [S11]* + |S12* — |S13)* + |Sas|® —
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Label | P(fo) | Qv | Qa | Qa | Qv | Qc | Qu | Qe | Q6

So(Uz) 1 0 0 2 6 0 0 0 0

5(T2) ol I el o e B A e B

S3(13) Oz (2|5 | 3|3 |30

Sy(T9) | 1+1 | 0 §4 0| & ?17 ?17 §4 0

Ss(T9) | 1+1 | 0o | F o | & L] L1220

Se(TY) 2 03 |0 ¥ | 3| 3|30

Se(T9) |[243+2 | 0 | F 0| 2 | 2| F|F]|0

Ss(T9) | 2+2+2 | 0 % -2 _Ti % % % 0

So(T9) |2+2+2 ] 0 | 4 | 2 | 2| 4 | 4 4]0

S10(T6) 2 0 0 2 2 5 5 0 0

S11(T6) 2 0 0 2| =2 | =5 5 0 0

S12(T6) 2 0 0 0 —4 5 5 0 0

S13(T6) 2 0 0 0 4 -5 | =5 0 0

e I A RS A A R

Soa(17) | 1 0 1G5 |03 |3 |3 |m|0

Sa29(To) 2 o %10 0] 6 |-2|5]0

Table 11: U(1) charges of scalars developing nonzero VEVs.
’51’2 = ’54’2 + ’56‘2 — 7’57’2 "‘3‘58’2 —|—3‘ng2 (4.5)
17X7?
2 2 2 2 2

+S10|" = [S11]* + [S12]” — [S13[" + | S23] 1480
So|? = 2|84]% — 2|S5]2 — 7|S7 |2 + 6]So|* + | S 2 2X* 4.6
[S2]7 = 2184|" = 2|55" = 7|S7[" + 6[S9|” + [S2s]” — =5 (4.6)

2 2 2 2 2 2 2 2 2 9X2
[S5]% = [Sal” +[S6|” + 3[:5s]" = 3[9" = |S10” + |S11]" — |S12[" + [S13]" = 775, (47)
6X2

Si52 = |Sas]? — — 4.8
|S15] | So3] T (4.8)

3X?
Soql?2 = 2 4.9

where X? = %Tr@ 4. eq. (.9) dictates Sog ~ O(Mstring/100). The following hierarchi-
cal assumption for the VEVs could be consistent with eq. ([£.5), (£.6), and (E.7):

1
5\53]2 ~ |Ss|? ~ |S11]* = others. (4.10)

~

As we mentioned before U(1)g remains unbroken since there is no neutral singlet carry-
ing a nonzero Q¢. Thus, in addition to photon there exists another strictly massless U(1)g
gauge boson (ezphoton). It couples only to superheavy exotic matter.

4.2 F flat directions

The neutral singlets in table [ classified to the five categories as shown in table [3. The
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Classes | I" VEV Neutral singlets
I 0 non-zero | Sp, Si, So, ---, Si3, Si5, So3
11 +1 Z€ero S14, S19, S21, S25, Sa7, Sog
111 —1 | (non-)zero S17, S22, S24, S26
1Y 0 | (non-)zero S16, S1ss S20
Vv —1 | non-zero S29

Table 12: Five classes of the neutral singlets.

singlets included in Class I, which do not carry U(1)rv charges defined in eq. (£.23), are
assumed to develop VEVs. The singlets in Class V are also assumed to get VEVs, but
they carry the U(1)r charges of —1. On the other hand, the singlet states in Classes II,
III, and IV which carry I" = +1 or 0, do not obtain VEVs.

We note that the R-parity violating operators, u¢d®d®, QLd¢, LLe¢ carry I" = —1.
Thus, if VEVs by singlets carrying positive IV charges are absent, as in our case, the
trilinear R-parity violating terms could not be induced in the superpotential. Hence, if
necessary, the singlets in III and IV, which all have the zero or negative I'' charges, can
be allowed to get VEVs. In this paper, however, for simplicity we consider only a vacuum
where all singlets in the classes III and IV do not obtain VEVs.

There exist superpotential terms constructed purely with the neutral singlet fields in
the class I:

W = 5156512 + 5356511 + 5158510 + 5358513 + 5259513 + 5457512
+5559511 + 575859 + 57515523 + S10511 + S12513 + - -+, (4.11)

where proper CS are assumed to be multiplied. As seen in eq. (-20), CS are constructed
also with the singlets in Class I. In the Z5 orbifold compactification, if a superpotential
term w satisfies all the selections rules, then w'2"*! (n = 1,2,3,---) also does. By including
the higher dimensional terms w'?, w?®, w37, - - -, one can find a vacuum where the singlets of
interest develop VEVSs of string scale, preserving the F flatness conditions [[[(]. Moreover,
one can always find a re-scaling transformation for the VEVs, leaving intact the F' flatness
conditions. Using this transformation, one can be consistent also the D flatness conditions
can be consistent [L(, []. With this justification we assume that all the neutral singlets
of the class I achieve VEVs of order Mg ing 0n a vacuum. As argued earlier, the selection
rule eq. (R.I7) reduces to eq. (B-21)) on such a vacuum.

Yukawa couplings containing two or more singlets with zero VEVs are trivial in sat-
isfying the F-flatness conditions. Thus, the couplings, in which two singlets or more from
II, IIT or IV are involved, do not provide non-trivial constraints for F-flatness. However, in
the presence of a coupling including only one singlet with vanishing VEV, F-flatness may
not be present unless there are more than two such terms.

In the superpotential, the singlets should couple to other fields such that Yukawa
couplings are neutral under U(1) and also the other U(1) gauge symmetries: I charges
of singlets in the class III should be compensated by being coupled with those of singlets
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in II. Since all the singlets in II and III do not get VEVs, the couplings between II and
IIT do not provide non-trivial constraints for F-flatness. On the other hand, we should be
careful for the couplings between singlets in I and IV, and in II and V, because in these
cases couplings only one singlet with a vanishing VEV are possible. In this model, indeed,
one can find two or more allowed superpotential terms for each singlet in II. Therefore,
the F-flatness conditions, W /0S4 = OW/0S16 = OW/0S18 = -+ = OW /IS8 = 0 can be
satisfied. D-flatness conditions can be satisfied by re-scaling of VEVs. However, in order to
get (S14) = (S16) = (S18) = -+ = (Ses) = 0 as a F-flatness solution and also a u solution,

many F-flatness conditions should turn out to be not independent ones.*

5. Vacuum with effective R parity

For the R-parity to be exact, it must be a subgroup of a U(1) gauge group, i.e. it must be
a discrete gauge symmetry [[], otherwise large gravitational corrections such as through
wormhole processes may violate it. Here, we can include the anomalous U(1) gauge sym-
metry in string compactification [2(], since the matter anomaly is cancelled by the Green-
Schwarz mechanism [RI]]. Taking out the SM nonabelian gauge groups from the Eg sector
leaves five U(1)s among which U(1)y cannot be used for the R-parity. Thus, for the
R-parity, we are left with four possibilities,

B-L)y=(2%2 2 2 0 0 0 00)(0%
X =(-2-2-2-2-20 0 0) (0% (5.1)
Q =(0 0 0 0 0 420 0) (08 '
Q =(0 0 0 0 0 0 +20) (08

For example, another U(1) charge (-2, -2, —2,—2,—2,—2,—2 0)(0®)’ is the linear com-
bination X — @1 — Q2. For an R-parity, we can use any odd number of U(1)s given in
eq. (b.1). The reason is the following. It is customarily assumed that the SO(10) subgroup
of Eg allows the spinor representation of SO(10). If it arises in the untwisted sector, it
must be of the form

([+++++;[+++) (5.2)

where + are i%,
numbers of sign flips among entries inside the bracket. For the representation (5.9), the
U(1) charges of (b.1]) are odd. On the other hand, the Higgs doublets in SO(10) have the

form

and the underline means all possible permutations and | | means even

(000 £1 0;+1 0) (5.3)

which give even numbers of the U(1) charges of (f.1]). We can define a good R-parity if
all the scalar fields developing VEVs carry even numbers of a U(1) charge, say I, a linear
combination of (f.1)). Here, a conflict arises if the phenomenologically needed VEVSs require
for some I odd fields to develop VEVs. Then, in general an exact parity cannot be defined.

“In general, all neutral singlets can develop VEVs with the F-flat and D-flat conditions satisfied [E]
Here, one can simply assume VEVs of Si4, Si6, -+, S28 are small.
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Let us note possible superpotential terms in the MSSM, generating AB # 0 operators,

d=4: utdd, (5.4)
d=5: QQQL, u‘u‘d‘e’ (5.5)

where Q and L are quark and lepton doublets, respectively. The dimension-4 operator of
eq. (f-4) alone does not lead to proton decay, but that term together with the AL # 0
superpotential QQLd° leads to a very fast proton decay and the product of their couplings
must satisfy a very stringent constraint, < 10726, The d = 5 operators in (5.5) are not that
much dangerous, but still the couplings must satisfy constraints, < 10~7 [23, [4]. Thus,
our prime objective of introducing the R-parity is to forbid ud“d® up to a sufficiently high
level.

A Z, subgroup of a U(1) gauge symmetry is welcome for a definition of R-parity. The
continuous global U(1) symmetry, being broken by superpotential terms, is not good for an
R-parity. For this, we note that the Zs subgroup of the U(1)x gauge group distinguishes
the spinor or the vector origin of our spectrum where

X =(-2,-2,-2,-2,-2, 0, 0, 0)(0%). (5.6)

For distinguishing two kinds of parity quantum numbers in our model, actually we have a
better U(1) gauge symmetry, U(1)r, whose generator is

FZX—(Q2+Q3)+%(Q4+Q5)+6(B—L) (5.7)
where
Q2 = (0%0,2,0)(0°)', Q3 = (0%;0,0,2)(0°%)’ (5.8)
Qs = (0%)(2,0,0°), Q5 =(0%)(0,2,0° (5.9)
B-L= (%,%,%,05)(08)’. (5.10)

Q4 and Q5 in (B.7) affect only the hidden Ej. In eq. (5.7), there is an odd number of
operators of eq. (pb.]), and hence I is good for defining a parity. The I' quantum numbers

of standard charge particles are listed in tables [ and Pl Let us define the R-parity by
giving VEVs to some I' = £2, 0 neutral singlets,

U(l)r — Z, =P. (5.11)

The parity defined in this way is multiplicative. Then, the even integer fields carry P = +1
and the odd integer fields carry P = —1. The P allowed couplings must have the total P =
+1. A more restrictive condition is the U(1)r gauge invariance of couplings: >, I'(z;) = 0,
which must be satisfied for the coupling to be present in the original theory.

Inspecting the I' quantum numbers in the tables, we find that the following fields are
possessing ‘strange’ I's in defining the R-parity:

D(T)), D(T)), D(Ts), D(Ts), (5.12)
S5, Sie,  Sis,  S20,  Sos (5.13)
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which are boxed in tables and ] and . Fields in (5.19) carry the familiar charge Qem= —%
down type charge but carry even I's, Qeyn= 0 neutral singlets in (p.13) are the familiar
neutral Higgs fields but they carry odd I's. To have an exact R-parity, neutral singlets S5,
S16, S18, S20, and Sa3 (the boxed ones) in table f] should not develop VEVs. But then, the
leftover pair in table ] cannot obtain mass since D(T}) carries P = 2 and D(Ty) carries
P = —1. To give them mass, some of Si5, Sis, Sis, S20, and Sa3 should develop VEV(s).
These VEVs violate the R-parity, i.e. P. So, in our model R-parity violation is inevitable
to give large masses to exotics.

5.1 R parity violation

As mentioned above, the dimension-5 operators of the form QQQL and u®u¢de®, allowed by
R-parity, are known to be safe for the proton lifetime constraint in string compactification
models [[L3]. To constrain the R-parity violation from the AB # 0 processes, therefore,
we focus on dimension-4 superpotential terms of the form u°d°d® attached with some of
S15, S16, S18, S20, and Sez. If there does not exist any such term, the R-parity violation
is safe from the proton lifetime bound. The mixing of D(T}) with d¢ is O(10716) for
Mp(ro) = O(10'%) GeV, and hence we will not consider the R-parity preserving coupling,
wedD(T9).

To study the non-renormalizable couplings, we need products of singlets having non-
vanishing VEVs, shown in eq. (R.29). Among these, non-vanishing I's are carried by Sy(I" =
2), S15(TY, T = —1), and Sa3(T9,T" = —1), Sa9(Ty,I' = —2). Since ud°d® carries I' = —3,
we need singlet products having I' = +3. So we must satisfy two conditions: inclusion of
So and inclusion of an odd number of S75 and Se3. Of course, the H-momentum rules and
the gauge invariance conditions must be satisfied. Let us consider the following example
of I' =3,

259 x Si5 x any number of {S1,---,S13}. (5.14)

Eq. (FI4) contains two Us fields and one T} field. With one 77, however, we cannot
satisfy the modular invariance condition, eq. (R.1§), since all fields in {Si,---,Si3} are
even twisted. So, the form (p.14)) is not allowed. A similar conclusion is drawn if we
replace Si5 by Sas in eq. (5.14). Even if (S15) # 0 and (So3) # 0, therefore, the coupling
u®d°d® is not generated to all orders.

Actually, there is a simpler argument for the absence of dimension 4 operators such
as u¢d°d®. It comes from the U(1)ps conservation. u¢dd® (and also QLd¢, LLe®) carries
I = —1, and the neutral singlets having VEVs do not carry S with positive I''. So, u¢dd®
is forbidden to all orders.

However by (Sy5) # 0 and (Sa3) # 0, d° and D(T}, Ts) can mix. Eventually, this kind

of mixing violates the R-parity. But the violation will be suppressed by

9, <ﬂ> ~ 10716,
mp
A similar analysis can be done for AB = 0,AL # 0 and R conserving operator
D(T),Ts)QL. Since proton decay with dimesion 4 operators needs both of u¢d°d® and
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D(T),Ts)QL, we will have the following suppression factor for proton decay operator,

2

0 <ﬂ> ~ 10732 (5.15)
mp

which is completely negligible. Then, proton decay proceeds dominantly by the dimension

5 operators [R9]. Being an SSM, gauge boson exchanges do not lead to proton decay. But

it is not clear whether p — et + (K, K)° dominates over p — et + ¥ since there is no

reason that d = 5 non-renormalizable couplings are flavor distinguished.

5.2 Effective R parity of light particles and CDM candidate

The observation that the modular invariance condition removes the coupling of the
form (p.14) hints that there might be an effective R-parity among light (electroweak scale)
particles. It arises from the fact that the odd R singlets of table ] are in odd twisted sec-
tors, and we need odd number of these odd twisted sector VEVs to have R-parity violating
couplings. But the odd number of twisted sectors cannot make modular invariant Yukawa
couplings since the other non-vanishing VEVs are carried by the fields in the even twisted
sectors.

v¢ in eq. (2.13) can obtain a large mass by singlet VEVs, and considered to be in
the intermediate scale. We consider H,(Us) and Hy(Usz) are the electroweak scale Higgs
doublets. All the other vectorlike pairs in table [l] are considered to be at the string scale.
Thus, the light particles of table [ are Q,d¢,u¢, L,e¢ of eq. (B.13), which carry P = 1. If
we assume that boxed fields in table [ are superheavy, the light (electroweak scale) Higgs
fields, including neutral singlets, carry even P quantum numbers. In this way, we have an
effective R-parity among light fields. But the original theory does not respect the R-parity,
including all particles. However, this R-parity violation must include heavy particles at the
string scale, which is not phenomenologically harmful. Since any R-parity violation among
light particles must occur at least with a suppression factor of O(Msying) for AB = 0 and
AL # 0 operators, the lightest supersymmetric particle (LSP) defined among light fields

022 years, estimated by multiplying (mysp/m,)5 to the proton lifetime

must live at least 1
estimate obtained from dimension 5 operators. Therefore, even though the R-parity is
not exact, we have a cold dark matter (CDM) candidate LSP which lives sufficiently long

enough.

6. Model without exotics

The VEVs given in eq. (B.29) break U(1)gauge symmetries with leaving only (SM gauge
group)x [SO(10) x U(1)s]’. Because the SM fields are completely blind to U(1)g, it is pos-
sible to break a linear combination of U(1)en and U(1)g, leaving only one U(1) unbroken.
Let us call this unbroken U(1) the U(1) of quantum electrodynamics, U(1)em. We choose
the symmetry breaking direction such that there does not appear any exotics, i.e. ﬁ(l)em
charges of particles are integers for color singlets, —}—%, —% for color triplets (3), and —%, —i—%
for color anti-triplets (3*). The electroweak hypercharge direction (R.9) fulfils this possi-
bility.
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Y from (2.9) | SU(3). x SU(2)L, Exotics in Model E
—% (3,1) a(l], ag, 2. 0491
3 (3°,1) ay, 3-af
~2 (3*,1) 2. a0,/
+2 (3,1) 2. o/
—1 (1,2) 01, 03, 3-04, 2-05
3 (1,2) 82, 2086, 2-07, 08, 09
&1, M, M25 Ma5 Ty Ty Mo 105 3 - Mis 2 Thas
0 (1,1) 2 T14,15,16) 3 - 7> 3~ M8, 2+ 1120,21,22,
7235 T2a» 25> €95 Tars T2gs 315 1133, 134,35
-1 (1,1) n3, €3, 2-&y, 2-&5, 2-mo, s, s, 732
+1 (1,1) §2, Mg, 2Tz, 28, 287, Tag, T30, 10

Table 13: Model S contains no exotics. Previous exotics carry the standard charges as shown in
the first column. The charges of the remaining states in Model S are the same as those in Model E.

This is achieved by giving a VEV(s) to an exotic singlet(s). For instance, let us choose
just m and 7jg. Both (m7s) = 0 (Model E) and (m175) # 0 (Model S) can be consistent
with SUSY, because the superpotential allows W = 717554510 + (n1ﬁ654510)13 + .-+, and
both vacua can satisfy the F- and D-flatness conditions. If (1;7g) # 0, the surviving U(1)
gauge symmetry is a linear combination of U(1)y and U(1)g, i.e. eq. (R.9)

?:Y+%%. (6.1)

Under this new U(1)y, all the exotics in Model E carry the regular hypercharges observed in
the SSM. With the new U(1)g, thus, all the exotics found in Model E are moved into states
with the standard charges as shown in table [[3. They still form vectorlike representations
under the SM gauge symmetry. Their mass terms discussed in section [} are still valid. On
the other hand, the regularly charged states in Model E, which originate from U, T3, Tg, To
and T,? (k=1,2,4,7) sectors, are not affected by this addition since they were not charged
under U(1)g in the beginning. As mentioned below eq. (.9), the hypercharge operator in
290 _ 3

= 77 at the string scale. In this case, therefore, more (vectorlike)

SU(3). triplets and SU(2)r, doublets at intermediate mass scales would be needed to explain

Model S gives sin

sin?fy ~ 0.23 at the electroweak scale. The discussion on the effective R-parity is similar
to that of Model E.
In this short section, we observed that models without exotics are possible, but in such
3

models it might be difficult to obtain sin? 0%, = ¢ at the string scale.

7. Conclusions

We have constructed an SSM from a Z15_j orbifold compactification. In the vacuum chosen

in (2.29), we achieve
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e An SSM with three families with the third family in the untwisted sector,
: :4200 3
o At the string scale, sin“fy, = 3,

e [t is possible to have one pair of light Higgs doublets H,, and H,; from the untwisted
sector,

e There exist Yukawa couplings for phenomenologically satisfactory quark and lepton
masses,

e All vectorlike color triplets D and D obtain masses,
e All exotic particles are vectorlike and obtain masses,
e D- and F-flat directions are possible,

e An effective R-parity (more accurately an effective matter parity), P, can be embed-
ded as a discrete group of gauged U(1)r,

e All exotics carry nonzero U(1)g quantum numbers,

e U(1)em and U(1)g are not broken. Therefore, there exist at least two massless color
singlet gauge bosons: photon and exphoton (meaning the massless gauge boson cou-
pling to exotic particles only).

o If U(1)em and U(1)g are properly broken to give U(1)eym unbroken, then one can
convert all exotics into states with the standard charges.

In sum we have shown that there exists a very satisfactory string vacuum which meets
all phenomenological constraints. At the least, this paper shows the existence proof of the
MSSM from superstring. But why the VEVs of eq. (R.29) should be taken as given there
is not understood yet in this paper.
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A. Massless Spectrum

The model presented in eq. (R.1]) gives

VEeg?t =1, a3=4, V.az=1, (A1)
VE-¢* =17, VZ-¢*=3. (A.2)

Then, the gauge group is
[{SU@3)c x SU@2)L, x U(1)y} x U(1)p_1, x U(1)%] x [SO(10) x U(1)*]". (A.3)
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P-V Visible States X SM

5 (++—+—+++) | L Q

(Uh) (-—=4=+--) | L L

(0,0,0;1,0;0,0,1) | L Hy

4 (Uz) |(0,0,0;—1,0;—1,0,0) | L H,
(0,0,0;0,0;1,0,-1) | L | 19=5Sp

(+——=——+++) | L d°

= (+++;+++++) | L Ve

(Us) t=—=+H+--) | L ¢

(+++-——-+-) | L e’

Table 14: Visible sector chiral fields from the U sector. There is no hidden sector chiral fields in
the U sector.

P46V X | (NF); | ©0 | Ps SM
(1,0,0;0,0;0%) (5, %:09" | L | o [=|3]| 3D
(=1,0,0;0,0;0%) (1, 5509 | L | o || 3| 3.D3
(0001003)@ 09 | L| o | i]2| 2-H,

(0,0,0;=1,0;0%0%) (L, 409 | L | o |1 |2]| 2-H,
(05,1,0,0) (5L, 1;09) Ll o [Z]2] 21
(0% -1,0,0) (3, 5%; 09 Ll 0o [ 3 ]2] 210
(03,0,0,1) (3, 1;00) L| o |12 2- 1o
(05;0,0, 1) (%, 409’ L 0 |2 2-1g

Table 15: Massless states satisfying (P +6V) - W =0 mod Z in Ts.

In this model, there are eight U(1) symmetries whose charges are

- (32 ) oy
B-L= <§,§,§;02703> (0%)' (A.5)
Q1 = (0°2,0,0) (0%)' (A.6)
Q2 = (0%0,2,0) (0°)’ (A7)
Qs = (0%:0,0,2) (0°)' (A8)
Q4 = (0%) (2,0,0;0%)’ (A.9)
Qs = (0%) (0,2,0;0°)' (A.10)
Qs = (0%) (0,0,2;0°)". (A.11)
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P 3V X | (ND); [6rr] SM [SO(10)]

3 -1 —1.-1 —-1.1 1 1\(3 1 .05\ 1 H1/3

o) (11.000) L 0 3 D
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Table 16: Massless states satisfying (P 4+ 3V)-W =0 mod Z in T3. The starred chirality R fields
in T3 can be represented also by un-starred chirality L fields with the opposite quantum numbers in
Ty, as shown in two lines. There are, in total, three 10’s of the hidden SO(10)’ from the T3 and Ty
sectors. The other states in T3 and Ty are singlets under the hidden gauge group. The multiplicity
is shown as the coefficient in the last column.

There are two familiar U(1) charges

111 -1 -1 /
Y = (2. = Z. _—. 8 A.12
<373737 2 I 2 707070> (O) ) ( )
2 22
Qp-rL =B-L= <§,§,§;0,0;0,0,0> (08)’. (A.13)

Note that X of the flipped SU(5) is a combination of B — L and Y,
X = (=2,-2,-2,-2,-2,:0,0,0) (0°)" = —=5(B — L) + 4Y. (A.14)

The U(1)r charge used in the text is

D= X+ 1(Qu+Qs) — (Q2+Qs) +6(B — L) (A.15)

Using the technique and notation of [T}, massless fields are calculated. In table [[4,
we list the massless fields from the untwisted sector. There is one singlet Sy which cannot
be a member of the SO(10) spinor. In tables [[§ and [L6, we list massless fields in Tj and
Ts(and Ty) which are not affected by Wilson lines. In tables [, [[§, [[9, and R0, we list
massless fields of 75,7y, 71, and T5 sectors, respectively. For the SM particles, we use the
familiar notations: Q,u¢,d¢, L, e, v¢ for sixteen fields of the SM and S for SO(10)’ singlets.
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Table 17: Chiral matter fields satisfying ©¢ = 0 in the 7Y sector, ©4 = 0 in the T, sector, and
©_ =0 in the T, sector.

The Higgs doublets are denoted by H, and Hy. The color triplets with Q= —%, which
in principle can mix with d, are denoted as D.
Exotic particles appear in the sectors affected by Wilson lines: T;,Tf,Tli, and T5i.

For these exotics, we use the following notations:
a;, @; : color exotics 3 and 3”
8, 6 = SU(2) doublet exotics (A.16)
- 2
iy £ 1 Qem = ig SU(3) x SU(2) singlet exotics

1
Nis Mj ¢+ Qem = :F§ SU(3) x SU(2) singlet exotics

If some exotics do not obtain mass, the model must be excluded from phenomenological
consideration. In the text, we have shown that all exotics obtain masses. This massive
ezxotics condition determines the vacuum where nonvanishing VEVs of S fields are dictated.
There are many possibilities for giving masses to exotic particles. In this paper, we chose
the minimum number of neutral singlet VEVs, eq. (R.22).
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Table 18: Chiral matter fields in the T, T, and T, sectors.

B. Anomalies

The anomalies associated with the non-Abelian gauge groups turn out to be
Tr[(NonAbel.)? - Y] = Tr[(NonAbel.)? - Q¢] = 0 (B.1)
Tr[(NonAbel.)? - Q1] = Tr[(NonAbel.)? - Q5] = Tr[(NonAbel.)? - Q3]

Tr{(NonAbel)? - Q4] —% (B.2)

Tr[(NonAbel.)? - Q1] = Tr|(NonAbel.)? - Q5] %, (B.3)
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Table 19: Chiral matter fields satisfying © = 0 in the T and Tj" sectors.
where NonAbel. = SU(3),, SU(2),, and SO(10). U(1)? type anomalies are
Tr[(Qy)’] = Tr[(Qy)? - Q6] = 0 (B.4)
Tr[(6Qy)” - Q1] = Tr[(6Qy)* - Q2] = Tr[(6Qy)* - Q3]
= Tr[(6Qy)* - Q4] = —30 (B.5
r|(6Qy B-r] = Tr[(6Qy)" - Qs .
Tr[(6Qy)? - Q1] = Tr[(6Qy)? - Q5] = +30 (B.6
and
Tr(Qs)*] = Tr[(Q6)* - Qy] =0 (B.7)
Tr[(Q6) - Q1] = Tr[(Q6)” - Qo] = Tr[(Q6)* - Q3]
= Tr[(Q6)? - Qa] = —4 (B.8)
r[(Q6)* - Qp-r] = Tr[(Q6)* - Q5] = +4, (B.9)
and so on.
Thus, the anomaly free U(1) charge operators are Qy, Qg, and
Qo = Q1 — Q2, (B.10)
Qp = Q1+ Q2 —2Qs, (B.11)
Qc = Q1+ Q2+ Q3 — 3Q4, (B.12)
Qa = Q1+ Q2+ Q3 + Q4 + 4Q5, (B.13)
1
Qe =Q1+Q2+Q3+Q4—Q5—6X- (B.14)
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Table 20: Chiral matter fields satisfying © = 0 in the T and T5i sectors. They are all the right-
handed states. Their C7P conjugates with the left-handed chirality are provided from the 79, T:,
and T, sectors.

The anomalous U(1)4 is given by

Qa=Q1+ Q2+ Q3+ Qy— Q5 +6X. (B.15)

It can be shown that the gravitational anomalies are TrQy = TrQg = TrQ, = TrQ, =
TrQ. = TrQg = TrQ. = 0, and Tr@Q4 = —50. It can be cancelled via the Green-Schwarz
mechanism 7).
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